Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The functional response of upstream DNA to dynamic supercoiling in vivo

Abstract

Because RNA polymerase is a powerful motor, transmission of transcription-generated forces might directly alter DNA structure, chromatin or gene activity in mammalian cells. Here we show that transcription-generated supercoils streaming dynamically from active promoters have considerable consequences for DNA structure and function in cells. Using a tamoxifen-activatable Cre recombinase to excise a test segment of chromatin positioned between divergently transcribed metallothionein-IIa promoters, we found the degree of dynamic supercoiling to increase as transcription intensified, and it was very sensitive to the specific arrangement of promoters and cis elements. Using psoralen as an in vivo probe confirmed that, during transcription, sufficient supercoiling is produced to enable transitions to conformations other than B-DNA in elements such as the human MYC far upstream element (FUSE), which in turn recruit structure-sensitive regulatory proteins, such as FUSE Binding Protein (FBP) and FBP-Interacting Repressor (FIR). These results indicate that mechanical stresses, constrained by architectural features of DNA and chromatin, may broadly contribute to gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the approaches used.
Figure 2: Topological analysis of chromatin circles excised between of the divergent metal-inducible promoters.
Figure 3: Inhibition of transcription reveals dynamic supercoiling.
Figure 4: Topoisomerases dissipate transcription-induced DNA supercoiling.
Figure 5: FUSE is a supercoil-dependent sensor of transcription.
Figure 6: FUSE melting absorbs transcription-induced dynamic DNA supercoiling.
Figure 7: Ongoing transcription authorizes binding of FBP and FIR to interpromoter region of FUSE-containing episomes.
Figure 8: The FUSE modulation of MTIIa promoter activity is supercoil-dependent.

Similar content being viewed by others

References

  1. Sinden, R.R. DNA Structure and Function (Academic Press, San Diego, 1994).

    Google Scholar 

  2. Kouzine, F. & Levens, D. Supercoil-driven DNA structures regulate genetic transactions. Front. Biosci. 12, 4409–4423 (2007).

    Article  CAS  Google Scholar 

  3. Peter, B.J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. [online] 5, R87 (2004).

    Article  Google Scholar 

  4. Lim, H.M., Lewis, D.E., Lee, H.J., Liu, M. & Adhya, S. Effect of varying the supercoiling of DNA on transcription and its regulation. Biochemistry 42, 10718–10725 (2003).

    Article  CAS  Google Scholar 

  5. Travers, A. & Muskhelishvili, G. DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat. Rev. Microbiol. 3, 157–169 (2005).

    Article  CAS  Google Scholar 

  6. Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  Google Scholar 

  7. Droge, P. Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo? Bioessays 16, 91–99 (1994).

    Article  CAS  Google Scholar 

  8. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  9. Chen, C.C. & Wu, H.Y. Transcription-driven DNA supercoiling and gene expression control. Front. Biosci. 8, d430–d439 (2003).

    Article  CAS  Google Scholar 

  10. Kouzine, F., Liu, J., Sanford, S., Chung, H.J. & Levens, D. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat. Struct. Mol. Biol. 11, 1092–1100 (2004).

    Article  CAS  Google Scholar 

  11. Wang, Z. & Droge, P. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro. EMBO J. 15, 581–589 (1996).

    Article  CAS  Google Scholar 

  12. Koster, D.A., Croquette, V., Dekker, C., Shuman, S. & Dekker, N.H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434, 671–674 (2005).

    Article  CAS  Google Scholar 

  13. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  14. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  Google Scholar 

  15. Bancaud, A. et al. Structural plasticity of single chromatin fibers revealed by torsional manipulation. Nat. Struct. Mol. Biol. 13, 444–450 (2006).

    Article  CAS  Google Scholar 

  16. van Holde, K. & Zlatanova, J. Unusual DNA structures, chromatin and transcription. Bioessays 16, 59–68 (1994).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J. 25, 2119–2130 (2006).

    Article  CAS  Google Scholar 

  18. Tomonaga, T. et al. Unrestraining genetic processes with a protein-DNA hinge. Mol. Cell 1, 759–764 (1998).

    Article  CAS  Google Scholar 

  19. Liu, H., Mulholland, N., Fu, H. & Zhao, K. Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol. Cell. Biol. 26, 2550–2559 (2006).

    Article  CAS  Google Scholar 

  20. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  21. Lutter, L.C., Judis, L. & Paretti, R.F. Effects of histone acetylation on chromatin topology in vivo. Mol. Cell. Biol. 12, 5004–5014 (1992).

    Article  CAS  Google Scholar 

  22. Norton, V.G., Marvin, K.W., Yau, P. & Bradbury, E.M. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J. Biol. Chem. 265, 19848–19852 (1990).

    CAS  PubMed  Google Scholar 

  23. Li, C.J., Averboukh, L. & Pardee, A.B. β-Lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J. Biol. Chem. 268, 22463–22468 (1993).

    CAS  PubMed  Google Scholar 

  24. Krishnan, P. & Bastow, K.F. Novel mechanism of cellular DNA topoisomerase II inhibition by the pyranonaphthoquinone derivatives α-lapachone and β-lapachone. Cancer Chemother. Pharmacol. 47, 187–198 (2001).

    Article  CAS  Google Scholar 

  25. Frohlich, R.F. et al. Inhibition of Flp recombinase by the topoisomerase I-targeting drugs, camptothecin and NSC-314622. J. Biol. Chem. 276, 6993–6997 (2001).

    Article  CAS  Google Scholar 

  26. Fujimoto, D.F., Pinilla, C. & Segall, A.M. New peptide inhibitors of type IB topoisomerases: similarities and differences vis-a-vis inhibitors of tyrosine recombinases. J. Mol. Biol. 363, 891–907 (2006).

    Article  CAS  Google Scholar 

  27. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    Article  CAS  Google Scholar 

  28. Vogelauer, M. & Camilloni, G. Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent. J. Mol. Biol. 293, 19–28 (1999).

    Article  CAS  Google Scholar 

  29. Jupe, E.R., Sinden, R.R. & Cartwright, I.L. Stably maintained microdomain of localized unrestrained supercoiling at a Drosophila heat shock gene locus. EMBO J. 12, 1067–1075 (1993).

    Article  CAS  Google Scholar 

  30. Jupe, E.R., Sinden, R.R. & Cartwright, I.L. Specialized chromatin structure domain boundary elements flanking a Drosophila heat shock gene locus are under torsional strain in vivo. Biochemistry 34, 2628–2633 (1995).

    Article  CAS  Google Scholar 

  31. Sinden, R.R., Carlson, J.O. & Pettijohn, D.E. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–783 (1980).

    Article  CAS  Google Scholar 

  32. He, L. et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 19, 1034–1044 (2000).

    Article  CAS  Google Scholar 

  33. Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331–341 (2000).

    Article  CAS  Google Scholar 

  34. Weinmann, A.S. & Farnham, P.J. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26, 37–47 (2002).

    Article  CAS  Google Scholar 

  35. Cai, S., Han, H.J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat. Genet. 34, 42–51 (2003).

    Article  CAS  Google Scholar 

  36. Coulon, V. et al. A novel calcium signaling pathway targets the c-fos intragenic transcriptional pausing site. J. Biol. Chem. 274, 30439–30446 (1999).

    Article  CAS  Google Scholar 

  37. Trinklein, N.D. et al. An abundance of bidirectional promoters in the human genome. Genome Res. 14, 62–66 (2004).

    Article  CAS  Google Scholar 

  38. Bi, C. & Benham, C.J. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinformatics 20, 1477–1479 (2004).

    Article  CAS  Google Scholar 

  39. Kramer, P.R. & Sinden, R.R. Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36, 3151–3158 (1997).

    Article  CAS  Google Scholar 

  40. Liang, C.P. & Garrard, W.T. Template topology and transcription: chromatin templates relaxed by localized linearization are transcriptionally active in yeast. Mol. Cell. Biol. 17, 2825–2834 (1997).

    Article  CAS  Google Scholar 

  41. Chung, H.J. & Levens, D. c-myc expression: keep the noise down!. Mol. Cells 20, 157–166 (2005).

    CAS  PubMed  Google Scholar 

  42. Michelotti, E.F., Sanford, S. & Levens, D. Marking of active genes on mitotic chromosomes. Nature 388, 895–899 (1997).

    Article  CAS  Google Scholar 

  43. Rothenburg, S., Koch-Nolte, F. & Haag, F. DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol. Rev. 184, 286–298 (2001).

    Article  CAS  Google Scholar 

  44. Michelotti, E.F., Tomonaga, T., Krutzsch, H. & Levens, D. Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J. Biol. Chem. 270, 9494–9499 (1995).

    Article  CAS  Google Scholar 

  45. Espinas, M.L., Jimenez-Garcia, E., Martinez-Balbas, A. & Azorin, F. Formation of triple-stranded DNA at d(GA.TC)n sequences prevents nucleosome assembly and is hindered by nucleosomes. J. Biol. Chem. 271, 31807–31812 (1996).

    Article  CAS  Google Scholar 

  46. Wong, B., Chen, S., Kwon, J.A. & Rich, A. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 2229–2234 (2007).

    Article  CAS  Google Scholar 

  47. Blank, T.A. & Becker, P.B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J. Mol. Biol. 260, 1–8 (1996).

    Article  CAS  Google Scholar 

  48. Levchenko, V., Jackson, B. & Jackson, V. Histone release during transcription: displacement of the two H2A–H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress. Biochemistry 44, 5357–5372 (2005).

    Article  CAS  Google Scholar 

  49. Peterson, C.L. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 12, R245–R247 (2002).

    Article  CAS  Google Scholar 

  50. Levchenko, V. & Jackson, V. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome. Biochemistry 43, 2359–2372 (2004).

    Article  CAS  Google Scholar 

  51. Freeman, L.A. & Garrard, W.T. DNA supercoiling in chromatin structure and gene expression. Crit. Rev. Eukaryot. Gene Expr. 2, 165–209 (1992).

    CAS  PubMed  Google Scholar 

  52. Wunsch, A. & Jackson, V. Histone release during transcription: acetylation stabilizes the interaction of the H2A–H2B dimer with the H3–H4 tetramer in nucleosomes that are on highly positively coiled DNA. Biochemistry 44, 16351–16364 (2005).

    Article  CAS  Google Scholar 

  53. Rhee, K.Y. et al. Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 14294–14299 (1999).

    Article  CAS  Google Scholar 

  54. Kroeger, P.E. & Rowe, T.C. Analysis of topoisomerase I and II cleavage sites on the Drosophila actin and Hsp70 heat shock genes. Biochemistry 31, 2492–2501 (1992).

    Article  CAS  Google Scholar 

  55. Wang, Q., Carroll, J.S. & Brown, M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol. Cell 19, 631–642 (2005).

    Article  CAS  Google Scholar 

  56. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  Google Scholar 

  57. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  Google Scholar 

  58. Takase, K. et al. Reversible G1 arrest induced by dimethyl sulfoxide in human lymphoid cell lines: kinetics of the arrest and expression of the cell cycle marker proliferating cell nuclear antigen in Raji cells. Cell Growth Differ. 3, 515–521 (1992).

    CAS  PubMed  Google Scholar 

  59. Matsumoto, K. & Hirose, S. Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of Drosophila. J. Cell Sci. 117, 3797–3805 (2004).

    Article  CAS  Google Scholar 

  60. Duncan, R. et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 8, 465–480 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research is supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research. We thank B. Lewis, H.-J. Chung and A. Mikaelyan for critical comments.

Author information

Authors and Affiliations

Authors

Contributions

F.K. and D.L. designed research; F.K., S.S. and Z.E.-F. performed research; F.K. and D.L. analyzed data and wrote the paper.

Corresponding author

Correspondence to David Levens.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2559 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouzine, F., Sanford, S., Elisha-Feil, Z. et al. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15, 146–154 (2008). https://doi.org/10.1038/nsmb.1372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing