Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT

Abstract

SET domain protein methyltransferases catalyze the transfer of methyl groups from the cofactor S-adenosylmethionine (AdoMet) to specific lysine residues of protein substrates, such as the N-terminal tails of histones H3 and H4 and the large subunit of the Rubisco holoenzyme complex. The crystal structures of pea Rubisco large subunit methyltransferase (LSMT) in ternary complexes with either lysine or ε-N-methyllysine (MeLys) and the product S-adenosylhomocysteine (AdoHcy) were determined to resolutions of 2.65 and 2.55 Å, respectively. The ζ-methyl group of MeLys is bound to the enzyme via carbon–oxygen hydrogen bonds that play a key role in catalysis. The methyl donor and acceptor are aligned in a linear geometry for SN2 nucleophilic transfer of the methyl group during catalysis. Differences in hydrogen bonding between the MeLys ε-amino group and Rubisco LSMT and SET7/9 explain why Rubisco LSMT generates multiply methylated Lys, wheras SET7/9 generates only MeLys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lys and MeLys are alternative substrates for Rubisco LSMT.
Figure 2: Binding of Lys in the lysine-binding pocket of LSMT.
Figure 3: Binding of MeLys in the lysine-binding pocket of LSMT.
Figure 4: Stereochemical mechanism of methyl group transfer.
Figure 5: Comparison of hydrogen bonding in the active sites of LSMT and SET7/9.
Figure 6: Space filling comparison of the lysine-binding sites of LSMT and SET7/9.
Figure 7: Substrate specificity of LSMT.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    Article  CAS  Google Scholar 

  2. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002).

    Article  CAS  Google Scholar 

  3. Rice, J.C. & Allis, C.D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263–273 (2001).

    Article  CAS  Google Scholar 

  4. Strahl, B.D., Ohba, R., Cook, R.G. & Allis, C.D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 96, 14967–14972 (1999).

    Article  CAS  Google Scholar 

  5. Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  Google Scholar 

  6. Houtz, R.L., Stults, J.T., Mulligan, R.M. & Tolbert, N.E. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc. Natl. Acad. Sci. USA 86, 1855–1859 (1989).

    Article  CAS  Google Scholar 

  7. Klein, R.R. & Houtz, R.L. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase. Plant Mol. Biol. 27, 249–261 (1995).

    Article  CAS  Google Scholar 

  8. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  9. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  Google Scholar 

  10. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  11. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  12. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  13. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  Google Scholar 

  14. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  Google Scholar 

  15. Zhang, X. et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117–127 (2002).

    Article  CAS  Google Scholar 

  16. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).

    CAS  PubMed  Google Scholar 

  17. Kwon, T. et al. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J. 22, 292–303 (2003).

    Article  CAS  Google Scholar 

  18. Wilson, J.R. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111, 105–115 (2002).

    Article  CAS  Google Scholar 

  19. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).

    Article  CAS  Google Scholar 

  20. Min, J., Zhang, X., Cheng, X., Grewal, S.I. & Xu, R.M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).

    CAS  PubMed  Google Scholar 

  21. Manzur, K.L. et al. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat. Struct. Biol. 10, 187–196 (2003).

    Article  CAS  Google Scholar 

  22. Trievel, R.C., Beach, B.M., Dirk, L.M., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).

    Article  CAS  Google Scholar 

  23. Marmorstein, R. Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28, 59–62 (2003).

    Article  CAS  Google Scholar 

  24. Yeates, T.O. Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell 111, 5–7 (2002).

    Article  CAS  Google Scholar 

  25. Dutnall, R.N. & Denu, J.M. Methyl magic and HAT tricks. Nat. Struct. Biol. 9, 888–891 (2002).

    Article  CAS  Google Scholar 

  26. Houtz, R.L., Poneleit, L., Jones, S.B., Royer, M. & Stults, J.T. Posttranslational modifications in the amino-terminal region of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from several plant species. Plant Physiol. 98, 1170–1174 (1992).

    Article  CAS  Google Scholar 

  27. Houtz, R.L., Royer, M. & Salvucci, M.E. Partial purification and characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase. Plant Physiol. 97, 913–920 (1991).

    Article  CAS  Google Scholar 

  28. Segel, I.H. Enzyme Kinetics (John Wiley & Sons, New York; 1975).

    Google Scholar 

  29. Derewenda, Z.S., Lee, L. & Derewenda, U. The occurrence of C-H...O hydrogen bonds in proteins. J. Mol. Biol. 252, 248–262 (1995).

    Article  CAS  Google Scholar 

  30. Bella, J. & Berman, H.M. Crystallographic evidence for Cα-H...O=C hydrogen bonds in a collagen triple helix. J. Mol. Biol. 264, 734–742 (1996).

    Article  CAS  Google Scholar 

  31. Fabiola, G.F., Krishnaswamy, S., Nagarajan, V. & Pattabhi, V. C-H...O hydrogen bonds in β-sheets. Acta Crystallogr. D 53, 316–320 (1997).

    Article  CAS  Google Scholar 

  32. Wahl, M.C. & Sundaralingam, M. C-H...O hydrogen bonding in biology. Trends Biochem. Sci. 22, 97–101 (1997).

    Article  CAS  Google Scholar 

  33. Senes, A., Ubarretxena-Belandia, I. & Engelman, D.M. The Cα-H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Pro. Natl. Acad. Sci. USA 98, 9056–9061 (2001).

    Article  CAS  Google Scholar 

  34. Weiss, M.S., Brandl, M., Suhnel, J., Pal, D. & Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26, 521–523 (2001).

    Article  CAS  Google Scholar 

  35. Scheiner, S., Kar, T. & Gu, Y. Strength of the Cα-H...O hydrogen bond of amino acid residues. J. Biol. Chem. 276, 9832–9837 (2001).

    Article  CAS  Google Scholar 

  36. Derewenda, Z.S., Derewenda, U. & Kobos, P.M. (His)Cε-H...O=C < hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 241, 83–93 (1994).

    Article  CAS  Google Scholar 

  37. Bach, R.D., Thorpe, C., & Dmitrenko, O. C-H...carboxylate oxygen hydrogen bonding in substrate activation by acyl-CoA dehydrogenases: synergy between the H-bonds. J. Phys. Chem. 106, 4325–4335 (2002).

    Article  CAS  Google Scholar 

  38. Coward, J.K. Chemical mechanisms of methyl transfer reactions: comparison of methylases with nonenyzmatic 'model reactions' in The Biochemistry of Adenosylmethionine (eds. Salvatore, F., Borek, E., Zappia, V., William-Ashman, H.G. & Schlenk, F.) 127–144 (Columbia University Press, New York; 1977).

    Google Scholar 

  39. Duff, A.P., Andrews, T.J. & Curmi, P.M. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol. 298, 903–916 (2000).

    Article  CAS  Google Scholar 

  40. Rebouche, C.J. & Broquist, H.P. Carnitine biosynthesis in Neurospora crassa: enzymatic conversion of lysine to ε-N-trimethyllysine. J. Bacteriol. 126, 1207–1214 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  43. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  44. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  45. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  46. Merritt, E.A. & Bacon, D.J. Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  47. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 24, 946–950 (1993).

    Google Scholar 

Download references

Acknowledgements

We would like to thank S. Gamblin for SET7/9–AdoHcy–histone H3 ternary complex coordinates, and D. Engelman and G. Felsenfeld for insightful discussions. Research by R.L.H. and E.M.F. was supported by the DOE, Division of Energy Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H Hurley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trievel, R., Flynn, E., Houtz, R. et al. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nat Struct Mol Biol 10, 545–552 (2003). https://doi.org/10.1038/nsb946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing