Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The danger from within: alarmins in arthritis

Key Points

  • Alarmins are endogenous molecules that are rapidly released to the extracellular milieu during infection and tissue damage, activating receptors such as Toll-like receptors and receptor for advanced glycosylation end products

  • In arthritis, including degenerative joint disease (osteoarthritis (OA)) and chronic inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis and spondylarthropathy), extracellular levels of alarmins are associated with disease activity and joint destruction

  • In OA, S100 proteins and high mobility group protein B1 (HMGB1) are important alarmins that induce positive-feedback loops of synovial cell reactivation, inflammation and cartilage degradation

  • Alarmins involved in chronic inflammatory arthritis include S100 proteins, HMGB1, heat-shock proteins and IL-33; these alarmins represent important links between the innate and adaptive immune systems

  • The level of alarmins in serum and synovial fluid could provide useful diagnostic and prognostic biomarkers of arthritis, and inhibiting alarmin pathways could be a therapeutically beneficial approach

Abstract

Alarmins (also known as danger signals) are endogenous molecules that are released to the extracellular milieu after infection or tissue damage. Extracellular alarmins interact with specific receptors expressed by cells that are engaged in host defence to stimulate signalling pathways that result in initiation of innate and adaptive immune responses, triggering inflammation or tissue repair. Alarmins are considered to be markers of destructive processes that occur in degenerative joint diseases (primarily osteoarthritis (OA)) and chronic inflammatory joint diseases (such as rheumatoid arthritis, psoriatic arthritis and spondylarthropathy). In OA, high mobility group protein B1 (HMGB1) and S100 proteins, along with many other alarmins, are abundantly secreted by joint cells, promoting cartilage matrix catabolism, osteophyte formation, angiogenesis and hypertrophic differentiation. The involvement of alarmins in chronic inflammatory arthritides is suggested by their presence in serum at high levels in these conditions, and their expression within inflamed synovia and synovial fluid. S100 proteins, HMGB1, IL-33 and other endogenous molecules have deleterious effects on joints, and can recruit immune cells such as dendritic cells to inflamed synovia, initiating the adaptive immune response and perpetuating disease. Improving our understanding of the pathological mechanisms associated with these danger signals is important to enable the targeting of new therapeutic approaches for arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic, integrative overview of alarmins.
Figure 2: Role of S100 proteins and high mobility group protein B1 in osteoarthritis.
Figure 3: Role of S100 proteins, high mobility group protein B1 and heat-shock proteins in chronic inflammatory arthritis.

Similar content being viewed by others

References

  1. Palazzo, C. et al. Risk factors and burden of osteoarthritis. Ann. Phys. Rehabil. Med. 59, 134–138 (2016).

    Article  PubMed  Google Scholar 

  2. Abramson, S. B. & Attur, M. Developments in the scientific understanding of osteoarthritis. Arthritis. Res. Ther. 11, 227 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bijlsma, J. W. et al. Osteoarthritis: an update with relevance for clinical practice. Lancet. 377, 2115–2126 (2011).

    Article  PubMed  Google Scholar 

  4. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Foell, D. Wittkowski, H. & Roth, J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 7, 382–390 (2007).

    Article  CAS  Google Scholar 

  6. Oppenheim, J. J. & Yang, D. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17, 359–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Houard, X., Goldring, M. B. & Berenbaum, F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 15, 375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, H. E. & Raucci, A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 7, 774–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pugin, J. Dear SIRS, the concept of “alarmins” makes a lot of sense! Intensive Care Med. 34, 218–221 (2008).

    Article  PubMed  Google Scholar 

  12. Pisetsky, D. S. et al. HMGB1 and microparticles as mediators of the immune response to cell death. Antioxid. Redox. Signal. 15, 2209–2219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loeser, R. F. et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chan, J. K. et al. Alarmins: awaiting a clinical response. J. Clin. Invest. 122, 2711–2719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manfredi, A. A. et al. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit. Rev. Immunol. 29, 69–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Tamaki, Y. et al. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J. Rheumatol. 38, 810–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Dumitriu, I. E. et al. Release of high mobility group BOX 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J. Immunol. 174, 7506–7515 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, D. et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J. Leukoc. Biol. 81, 59–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, D. et al. The alarmin functions of high-mobility group proteins. Biochim. Biophys. Acta 1799, 157–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Denise, L. C. et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 175, 8296–8302 (2005).

    Article  Google Scholar 

  22. Seol, D. et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum. 64, 3626–3637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buckwalter, J. A. et al. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage 4, 286–294 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Weinans, H. et al. Pathophysiology of peri-articular bone changes in osteoarthritis. Bone 51, 190–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez, C. et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum. 64, 1193–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bidwell, J. P. et al. Is HMGB1 an osteocyte alarmin? J. Cell. Biochem. 103, 1671–1680 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Ke, X. et al. Synovial fluid HMGB-1 levels are associated with osteoarthritis severity. Clin. Lab. 61, 809–818 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, L. C. et al. S100A12 levels in synovial fluid may reflect clinical severity in patients with primary knee osteoarthritis. Biomarkers 18, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Wei, M. et al. Increased thymosin β4 levels in the serum and SF of knee osteoarthritis patients correlate with disease severity. Regul. Pept. 185, 34–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Denoble, A. E. et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl. Acad. Sci. U.S.A. 108, 2088–2093 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ayral, X. et al. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis: results of 1 year longitudinal arthroscopic studi in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Benito, M. J. et al. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Da, R. R. et al. B cell clonal expansion and somatic with osteoarthritis genes in the synovial membrane of patients hypermutation of Ig variable heavy chain. J. Immunol. 178, 557–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Sunahori, K. et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8, 69 (2006).

    Article  CAS  Google Scholar 

  36. Daghestani, H. N. et al.Inflammatory biomarkers in osteoarthritis. Osteoarthritis Cartilage 23, 1890–1896 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Lent, P. L. et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64, 1466–1476 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Liu-Bryan, R. & Terkeltaub, R. T. The growing array of innate inflammatory ignition switches in osteoarthritis. Arthritis Rheum. 64, 2055–2058 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marenholz, I. et al. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 322, 1111–1122 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Donato, R. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech. 60, 540–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ruse, M. et al. S100A7, S100A10, and S100A11 are transglutaminase substrates. Biochem. 40, 3167–3173 (2001).

    Article  CAS  Google Scholar 

  42. Meijer, B., Gearry, R. B. & Day, A. S. The role of S100A12 as a systemic marker of inflammation. Int. J. Inflam. 2012, 907078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yammani, R. R. et al. Interleukin-7 stimulates secretion of S100A4 by activating the JAK-STAT signaling pathway in human articular chondrocytes. Arthritis Rheum. 60, 792–800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donato, R. et al. Functions of S100 proteins. Curr. Mol. Med. 13, 24–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yammani, R. R. et al. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: role of the receptor for advanced glycation end products. Arthritis Rheum. 54, 2901–2911 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Van den Berg, W. B. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis Cartilage 19, 338–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Van Lent, P. L. Stimulation of chondrocyte-mediated cartilage destruction by S100A8 in experimental murine arthritis. Arthritis Rheum. 58, 3776–3787 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Nacken, W. et al. S100A9/S100A8: myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc. Res. Tech. 60, 569–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Vogl, T. et al. Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes. Int. J. Mol. Sci. 13, 2893–2917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Lent, P. L. et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann. Rheum. Dis. 67, 1750–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2008).

    Article  CAS  Google Scholar 

  52. Schelbergen, R. F. P. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like Receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Schelbergen, R. F. P. et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann. Rheum. Dis. 75, 218–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Van Den Bosch, M. H. et al. The alarmins S100A8/A9 induce canonical Wnt signaling in murine knee joints; implications for osteoarthritis. Arthritis Rheumatol. 68, 152–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Schelbergen, R. F. P. et al. Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann. Rheum. Dis. 74, 2254–2258 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Miller, R. et al. Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheum. 67, 2933–2943 (2015).

    Article  CAS  Google Scholar 

  58. Song, C. et al. Regulation of inflammatory response in human chondrocytes by lentiviral mediated RNA interference against S100A10. Inflamm. Res. 61, 1219–1227 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Swisher, J. F., Burton, N., Bacot, S. M., Vogel, S. N. & Feldman, G. M. Annexin A2 tetramer activates human and murine macrophages through TLR4. Blood 115, 549–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cecil, D. L. & Terkeltaub, R. Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J. Immunol. 180, 8378–8385 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kosaki, A. et al. Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes. J. Clin. Endocrinal. Metab. 89, 5423–5428 (2004).

    Article  CAS  Google Scholar 

  62. Nakashima, M. et al. Role of S100A12 in the pathogenesis of osteoarthritis. Biochem. Biophys. Res. Commun. 422, 508–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Han, M. et al. Identification of osteoarthritis biomarkers by proteomic analysis of synovial fluid. J. Int. Med. Res. 40, 2243–2250 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Loeser, R. F. et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum. 52, 2376–2385 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Magna, M. & Pisetsky, D. S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med. 20, 138–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Z. C. et al. Correlation of synovial fluid HMGB-1 levels with radiographic severity of knee osteoarthritis. Clin. Invest. Med. 34, 298–303 (2011).

    Article  CAS  Google Scholar 

  67. Amin, A. R. & Islam, A. B. Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGB1. DNA Cell Biol. 33, 550–565 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Terada, C. et al. Gene expression and localization of high-mobility group box chromosomal protein-1 (HMGB-1) in human osteoarthritic cartilage. Acta Med. Okayama 65, 369–377 (2011).

    CAS  PubMed  Google Scholar 

  69. Kyostio-Moore, S. et al. STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers. Comp. Med. 61, 346–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Arnandis, I. et al. Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes. Rheumatology (Oxford) 49, 854–861 (2010).

    Article  CAS  Google Scholar 

  71. Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune MyD88-dependent signaling drives pro-catabolic effects of the endogenous TLR2/TLR4 ligands LMW-HA and HMGB1. Arthritis Rheum. 62, 2004–2012 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Taniguchi, N. et al. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol. Cell. Biol. 27, 5650–5663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heinola, T. et al. High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clin. Exp. Rheumatol. 28, 511–518 (2010).

    CAS  PubMed  Google Scholar 

  74. García-Arnandis, I. et al. High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1β in osteoarthritic synoviocytes. Arthritis Res. Ther. 12, R165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wähämaa, H. et al. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res. Ther. 13, R136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Eden, W., van der Zee, R. & Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 5, 318–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kubo, T. et al. Stress-induced proteins in chondrocytes from patients with osteoarthritis. Arthritis Rheum. 28, 1140–1145 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Takahashi, K. et al. Localization of heat shock protein in osteoarthritic cartilage. Scand. J. Rheumatol. 26, 368–375 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Terauchi, R. et al. Hsp70 prevents nitric oxide-induced apoptosis in articular chondrocytes. Arthritis Rheum. 48, 1562–1568 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Siebelt, M. et al. Hsp90 inhibition protects against biomechanically induced osteoarthritis in rats. Arthritis Rheum. 65, 2102–2112 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Lambrecht, S. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins? Rheumatology (Oxford) 53, 223–232 (2014).

    Article  CAS  Google Scholar 

  82. Lambrecht, S. et al. Differential expression of αB-Crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum. 60, 179–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Lambrecht, S. et al. Proteome characterization of human articular chondrocytes leads to novel insights in the function of small heat-shock proteins in chondrocyte homeostasis. Osteoarthritis Cartilage 18, 440–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Kirsch, T. et al. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 8, 294–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Pfander, D., Swoboda, B. & Kirsch, T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am. J. Pathol. 159, 1777–1783 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ea, H. K. et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann. Rheum. Dis. 67, 1617–1625 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Graff, R. D. et al. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43, 1571–1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kumahashi, N. et al. Correlation of changes in pain intensity with synovial fluid adenosine triphosphate levels after treatment of patients with osteoarthritis of the knee with high-molecular-weight hyaluronic acid. Knee 18, 160–164 (2011).

    Article  PubMed  Google Scholar 

  89. Berenbaum, F. et al. Concomitant recruitment of ERK1/2 and p38MAPK signalling pathway is required for ativation of cytoplasmic phapholipase A2 via ATP in articular chondrocytes. J. Biol. Chem. 278, 13680–13687 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Ryan, L. M. et al. ATP-induced chondrocalcinosis. Arthritis Rheum. 35, 1520–1525 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Guévremont, M. et al. Galectin-3 surface expression on human adult chondrocytes: a potential substrate for collagenase-3. Ann. Rheum. Dis. 63, 636–643 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ohshima, S. et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum. 48, 2788–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Janelle-Montcalm, A. et al. Extracellular localization of galectin-3 has a deleterious role in joint tissues. Arthritis Res. Ther. 9, R20 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hirsiger, S. et al. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012, 315941 (2012).

  95. Goldring, M. B. et al. Osteoarthritis and cartilage: the role of cytokines. Curr. Rheumatol. Rep. 2, 459–465 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Pelletier, J. P. et al. Are cytokines involved in osteoarthritic pathophysiology? Semin. Arthritis Rheum. 20 (Suppl. 2), 12–25 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Towle, C. A. et al. Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/paracrine role in pathogenesis. Osteoarthritis Cartilage 5, 293–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. McNulty, A. L. et al. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J. Orthop. Res. 31, 1039–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Blain, E. J. et al.The effect of thymosin β4 on articular cartilage chondrocyte matrix metalloproteinase expression. Biochem. Soc. Trans. 30, 879–882 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Homandberg, G. A. et al. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage 6, 231–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Pichika, R. & Homandberg, G. A. Fibronectin fragments elevate nitric oxide (NO) and inducible NO synthetase (iNOS) levels in bovine cartilage and iNOS inhibitors block fibronectin fragment mediated damage and promote repair. Inflamm. Res. 53, 405–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Homandberg, G. A. & Hui, F. Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage culturedwith fibronectin fragments. Arch. Biochem. Biophys. 334, 325–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Hwang, H. S. et al. Fibronectin ragment induced expression of matrix metallo-proteinases is mediated by MyD88-dependent TLR-2 signaling pathway in human chondrocytes. Arthritis Res. Ther. 17, 320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yasuda, T. Cartilage destruction by matrix degradation products. Mod. Rheumatol. 16, 197–205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jyang, D. et al. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol. 23, 435–461 (2007).

    Article  CAS  Google Scholar 

  106. Ohno, S. et al. Hyaluronan oligosaccharides induce matrix metalloproteinase 13 via transcriptional activation of NFκB and p38 MAP kinase in articular chondrocytes. J. Biol. Chem. 281, 17952–17960 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Barreto, G. et al. Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res. Ther. 17, 379 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fuerst, F. C. et al. Regulation of MMP3 by laminin alpha 4 in human osteoarthritic cartilage. Scand. J. Rheumatol. 40, 494–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schminke, B. et al. Laminins and nidogens in the pericellular matrix of chondrocytes: their role in osteoarthritis and chondrogenic differentiation. Am. J. Pathol. 186, 410–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Nakoshi, Y. et al. Regulation of tenascin-C expression by tumor necrosis factor-alpha in cultured human osteoarthritis chondrocytes. J. Rheumatol. 35, 147–152 (2008).

    CAS  PubMed  Google Scholar 

  111. Patel, L. et al. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet. Disord. 12, 164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chockalingam, P. S. et al. Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21, 339–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Hasegawa, M. et al. Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J. Rheumatol. 31, 2021–2026 (2004).

    CAS  PubMed  Google Scholar 

  114. Okamura, N. et al. Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 18, 839–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Lohmander, L. S. et al. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 36, 1214–1222 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Lees, S. et al. Bioactivity in an aggrecan 32-mer fragment is mediated via Toll-like receptor 2. Arthritis Rheum. 67, 1240–1249 (2015).

    Article  CAS  Google Scholar 

  117. Manson, J., Thiemermann, C. & Brohi, K. Trauma alarmins as activators of damage-induced inflammation. Br. J. Surg. 99, 12–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Zhou, S. J., Sun, Z. X. & Liu, J. Neopterin concentrations in synovial fluid may reflect disease severity in patients with osteoarthritis. Scand. J. Clin. Lab. Invest. 73, 344–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Priam, S. et al. Identification of soluble 14-3-3ε as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum. 65, 1831–1842 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Maksymowych, W. P. & Marotta, A. 14-3-3η: a novel biomarker platform for rheumatoid arthritis. Clin. Exp. Rheumatol. 32, 35–39 (2014).

    Google Scholar 

  121. Théry, C. et al. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Prakken, B., Albani, S. & Martini, A. Juvenile idiopathic arthritis. Lancet 377, 2138–2149 (2011).

    Article  PubMed  Google Scholar 

  123. Lee, D. M. & Weinblatt, M. E. Rheumatoid arthritis. Lancet 358, 903–911 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Choy, E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51 (Suppl. 5), v3–v11 (2012).

    Article  CAS  Google Scholar 

  125. Muller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Frosch, M. et al. Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum. 43, 628–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Choi, I. Y. et al. MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Ann. Rheum. Dis. 74, 499–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Hammer, H. B. et al. Calprotectin (a major S100 leucocyte protein) predicts 10-year radiographic progression in patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 150–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Foell, D. et al. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology (Oxford) 42, 1383–1389 (2003).

    Article  CAS  Google Scholar 

  132. Youssef, P. et al. Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane. J. Rheumatol. 26, 2523–2528 (1999).

    CAS  PubMed  Google Scholar 

  133. Foell, D. et al. Monitoring neutrophil activation in juvenile rheumatoid arthritis by S100A12 serum concentrations. Arthritis Rheum. 50, 1286–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Frosch, M. et al. Expression of myeloid-related proteins 8 and 14 in systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 48, 2622–2626 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Kane, D. et al. Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatic arthritis. Arthritis Rheum. 48, 1676–1685 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Kruithof, E. et al. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res. Ther. 7, R569–R580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Imamichi, T. et al. Expression and cloning of migration inhibitory factor-related protein (MRP)8 and MRP14 in arthritis-susceptible rats. Biochem. Biophys. Res. Commun. 194, 819–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  138. van Lent, P. et al. The inhibitory receptor FcγRII reduces joint inflammation and destruction in experimental immune complex-mediated arthritides not only by inhibition of FcγRI/III but also by efficient clearance and endocytosis of immune complexes. Am. J. Pathol. 163, 1839–1848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nabbe, K. C. et al. Coordinate expression of activating Fc γ receptors I and III and inhibiting Fc γ receptor type II in the determination of joint inflammation and cartilage destruction during immune complex-mediated arthritis. Arthritis Rheum. 48, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. van Lent, P. L. et al. S100A8 causes a shift toward expression of activatory Fcγ receptors on macrophages via Toll-like receptor 4 and regulates Fcγ receptor expression in synovium during chronic experimental arthritis. Arthritis Rheum. 62, 3353–3364 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Grevers, L. C. et al. S100A8 enhances osteoclastic bone resorption in vitro through activation of Toll-like receptor 4: implications for bone destruction in murine antigen-induced arthritis. Arthritis Rheum. 63, 1365–1375 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Vogl, T. et al. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. Nat. Commun. 5, 4593 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Hofmann, M. A. et al. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 3, 123–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Odink, K. et al. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330, 80–82 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Wittkowski, H. et al. Effects of intra-articular corticosteroids and anti-TNF therapy on neutrophil activation in rheumatoid arthritis. Ann. Rheum. Dis. 66, 1020–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Foell, D. & Roth, J. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum. 50, 3762–3771 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Holzinger, D. et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Moncrieffe, H. et al. A subgroup of juvenile idiopathic arthritis patients who respond well to methotrexate are identified by the serum biomarker MRP8/14 protein. Rheumatology (Oxford) 52, 1467–1476 (2013).

    Article  CAS  Google Scholar 

  149. Hammer, H. B., Fagerhol, M. K., Wien, T. N. & Kvien, T. K. The soluble biomarker calprotectin (an S100 protein) is associated to ultrasonographic synovitis scores and is sensitive to change in patients with rheumatoid arthritis treated with adalimumab. Arthritis Res. Ther. 13, R178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hamada, T. et al. Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum. 58, 2675–2685 (2008).

    Article  PubMed  Google Scholar 

  151. Kokkola, R. et al. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum. 46, 2598–2603 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Taniguchi, N. et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 48, 971–981 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Pullerits, R. et al. High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis Rheum. 48, 1693–1700 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Kokkola, R. et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 48, 2052–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Ostberg, T. et al. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis. Arthritis Res. Ther. 10, R1 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Palmblad, K. et al. Morphological characterization of intra-articular HMGB1 expression during the course of collagen-induced arthritis. Arthritis. Res. Ther. 9, R35 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Parkkinen, J. & Rauvala, H. Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J. Biol. Chem. 266, 16730–16735 (1991).

    CAS  PubMed  Google Scholar 

  160. Yamoah, K. et al. High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol. Endocrinol. 22, 1141–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gondokaryono, S. P. et al. The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. J. Leukoc. Biol. 82, 657–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Schierbeck, H. et al. HMGB1 levels are increased in patients with juvenile idiopathic arthritis, correlate with early onset of disease, and are independent of disease duration. J. Rheumatol. 40, 1604–1613 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Park, S. Y. et al. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur. J. Immunol. 45, 1216–1227 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Hreggvidsdottir, H. S. et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J. Leukoc. Biol. 86, 655–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Qin, Y. et al. HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death Dis. 5, e1077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. van Eden, W. et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331, 171–173 (1988).

    Article  CAS  PubMed  Google Scholar 

  168. Kamphuis, S. et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 366, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. de Kleer, I. M. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. van Roon, J. A. et al.Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J. Clin. Invest. 100, 459–463 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Macht, L. M. et al. Relationship between disease severity and responses by blood mononuclear cells from patients with rheumatoid arthritis to human heat-shock protein 60. Immunology 99, 208–214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Prakken, B. J. et al. Inhibition of adjuvant-induced arthritis by interleukin-10-driven regulatory cells induced via nasal administration of a peptide analog of an arthritis-related heat-shock protein 60 T cell epitope. Arthritis Rheum. 46, 1937–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Palmer, G. & Gabay, C. Interleukin-33 biology with potential insights into human diseases. Nat. Rev. Rheumatol. 7, 321–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Talabot-Ayer, D. et al. Immune-mediated experimental arthritis in IL-33 deficient mice. Cytokine 69, 68–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Collins, L. V. et al Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 75, 995–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Hajizadeh, S. et al. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, 234–240 (2003).

    Article  Google Scholar 

  177. Harty, L. C. et al. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann. Rheum. Dis. 71, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hazeldine, J. et al. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways. Injury 46, 975–984 (2015).

    Article  PubMed  Google Scholar 

  180. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Kakimoto, K. et al.Suppressive effect of a neutrophil elastase inhibitor on the development of collagen-induced arthritis. Cell. Immunol. 165, 26–32 (1995).

    Article  CAS  PubMed  Google Scholar 

  183. Witter, J. et al. The immunologic detection and characterization of cartilage proteoglycan degradation products in synovial fluids of patients with arthritis. Arthritis Rheum. 30, 519–529 (1987).

    Article  CAS  PubMed  Google Scholar 

  184. Powell, J. D. & Horton, M. R. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol. Res. 31, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Cs-Szabo, G., Roughley, P. J., Plaas, A. H. & Glant, T. T. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum. 38, 660–668 (1995).

    Article  CAS  PubMed  Google Scholar 

  186. Di Virgilio, F. et al.Leukocyte P2 receptors: a novel target for anti-inflammatory and anti-tumor therapy. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 85–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Hammer, H. B. et al. Calprotectin (a major leucocyte protein) is strongly and independently correlated with joint inflammation anddamage in rheumatoid arthritis. Ann. Rheum. Dis. 66, 1093–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wittkowski, H. et al.S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. O'Reilly, S. Pound the alarm: danger signals in rheumatic diseases. Clin. Sci. (Lond.) 128, 297–305 (2015).

    Article  CAS  Google Scholar 

  190. Srikrishna, G. et al. Carboxylated glycans mediate colitis through activation of NF-κB. J. Immunol. 175, 5412–5422 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Prakken, B. J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 101, 4228–4233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Koffeman, E. C. et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 60, 3207–3216 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by INSERM, the University of Paris 6 (Pierre and Marie Curie), Arthritis R&D (ROAD: Research on Osteoarthritic Diseases) and the Agence Nationale de la Recherche. D.H. acknowledges support from the Interdisciplinary Centre of Clinical Research, Münster, Germany (Clinical Research Award CRA0) and the German Ministry for Education and Science (BMBF 01GM08100, AID-Net).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, to substantial discussions of its content, to writing the article and to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Francis Berenbaum.

Ethics declarations

Competing interests

D.H. declares that he has received speaker's fees from Novartis. M.N., F.B. and C.J. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefla, M., Holzinger, D., Berenbaum, F. et al. The danger from within: alarmins in arthritis. Nat Rev Rheumatol 12, 669–683 (2016). https://doi.org/10.1038/nrrheum.2016.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing