Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metaplasticity: tuning synapses and networks for plasticity

Key Points

  • Synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), must be tightly regulated to prevent saturation, which would impair learning. Metaplasticity mechanisms have evolved to help implement this essential computational constraint. Metaplasticity refers to neural changes that are induced by activity at one point in time and that persist and affect subsequently induced LTP or LTD.

  • The activation of NMDA (N-methyl-D-aspartate) receptors can cause a persistent reduction in LTP induction and an enhancement of LTD. These effects are synapse-specific, last tens of minutes and contribute to LTD induction during conventional low-frequency stimulation protocols. The mechanisms of this regulation are poorly understood, but activation of protein phosphatases and alteration of calcium/calmodulin-dependent protein kinase II function are clear candidates.

  • Prior activation of group 1 metabotropic glutamate receptors (group 1 mGluRs) facilitates both the induction and the persistence of LTP in the hippocampus. The facilitated induction probably involves depression of afterhyperpolarizations (AHPs) and trafficking of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors to the extrasynaptic membrane, whereas the facilitated persistence entails de novo local protein synthesis.

  • Heterosynaptic metaplasticity that crosses between synapses can also occur. Stimulation of protein synthesis by activity in one set of synapses can facilitate LTP persistence through a synaptic tag-and-capture process operating at a second set of weakly activated synapses. Heterosynaptic metaplasticity can also be mediated by altered postsynaptic ion-channel function and retrograde endocannabinoid signalling that reduces transmission at nearby inhibitory GABAergic terminals.

  • Behaviourally, stress can inhibit LTP and facilitate LTD through NMDA-receptor-dependent mechanisms. Sensory stimulation or deprivation alters plasticity thresholds in cortical regions, especially during developmental periods. Reductions in the slow AHP in piriform and hippocampal neurons support the learning of behavioural tasks, suggesting a metaplastic role for this mechanism in controlling learning-related plasticity thresholds.

  • The ability to harness metaplasticity mechanisms might contribute to strategies for treating adult amblyopia or the development of therapies aimed at improving cognition in individuals with neurological disorders. Metaplasticity paradigms also share commonalities with ischaemic preconditioning, so its mechanisms might present targets for preventing stroke in at-risk individuals.

  • In conclusion, metaplasticity is a major regulator of plasticity thresholds and therefore has a key role in keeping synapses working in a range that permits the full expression of plasticity. In turn, this helps to keep networks operating at an appropriate level for information processing and storage. Considerable research is still needed to clarify the mechanisms that underpin different forms of metaplasticity and their contribution to network dynamics and behavioural learning.

Abstract

Synaptic plasticity is a key component of the learning machinery in the brain. It is vital that such plasticity be tightly regulated so that it occurs to the proper extent at the proper time. Activity-dependent mechanisms that have been collectively termed metaplasticity have evolved to help implement these essential computational constraints. Various intercellular signalling molecules can trigger lasting changes in the ability of synapses to express plasticity; their mechanisms of action are reviewed here, along with a consideration of how metaplasticity might affect learning and clinical conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glutamate-receptor-mediated mechanisms of metaplasticity.
Figure 2: Proposed mechanisms of heterosynaptic metaplasticity.
Figure 3: Proposals for metaplasticity that is induced during learning.

Similar content being viewed by others

References

  1. Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Neves, G., Cooke, S. F. & Bliss, T. V. P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008).

    Article  CAS  Google Scholar 

  3. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996). This paper provided the first formal description and review of metaplasticity phenomena.

    Article  CAS  PubMed  Google Scholar 

  4. Abraham, W. C. & Tate, W. P. Metaplasticity: a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, Y. Y., Colino, A., Selig, D. K. & Malenka, R. C. The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730–733 (1992). This key paper provided the first clear demonstration that prior activation of NMDARs can inhibit the induction of subsequent LTP.

    Article  CAS  PubMed  Google Scholar 

  6. Coan, E. J., Irving, A. J. & Collingridge, G. L. Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 105, 205–210 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Youssef, F. F., Addae, J. I. & Stone, T. W. NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. Brain Res. 1073, 183–189 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Fujii, S. et al. The long-term suppressive effect of prior activation of synaptic inputs by low-frequency stimulation on induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Exp. Brain Res. 111, 305–312 (1996).

    CAS  PubMed  Google Scholar 

  9. Woo, N. H. & Nguyen, P. V. “Silent” metaplasticity of the late phase of long-term potentiation requires protein phosphatases. Learn. Mem. 9, 202–213 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fujii, S. et al. Endogenous adenosine regulates the effects of low-frequency stimulation on the induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Neurosci. Lett. 279, 121–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Izumi, Y., Tokuda, K. & Zorumski, C. F. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18, 258–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. O'Connor, D. H., Wittenberg, G. M. & Wang, S. S. H. Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005).

    Article  PubMed  Google Scholar 

  13. Abraham, W. C. & Huggett, A. Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7, 137–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Christie, B. R. & Abraham, W. C. Priming of associative long-term depression by θ frequency synaptic activity. Neuron 8, 79–84 (1992).

    Article  Google Scholar 

  15. Wang, Y., Wu, J., Rowan, M. J. & Anwyl, R. Role of protein kinase C in the induction of homosynaptic long-term depression by brief low frequency stimulation in the dentate gyrus of the rat hippocampus in vitro. J. Physiol. 513, 467–475 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mockett, B., Coussens, C. & Abraham, W. C. NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. Eur. J. Neurosci. 15, 1819–1826 (2002). This paper provided the first demonstration that the induction of LTD by LFS involves an initial NMDAR-induced reduction in the threshold for LTD by pulses early in the LFS, so that pulses later in the LFS can induce the LTD.

    Article  PubMed  Google Scholar 

  17. Ngezahayo, A., Schachner, M. & Artola, A. Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci. 20, 2451–2458 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Rev. Neurosci. 8, 413–426 (2007).

    Article  CAS  Google Scholar 

  19. Perez-Otano, I. & Ehlers, M. D. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 28, 229–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neurosci. 8, 1043–1050 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53, 17–24 (2007). This paper provided a clear demonstration, using 2-photon release of caged glutamate, that synaptic activation of NMDARs can lead to down-regulation of NMDAR function and thus serve as a possible mechanism of metaplasticity.

    Article  CAS  PubMed  Google Scholar 

  23. Kato, K. & Zorumski, C. F. Nitric oxide inhibitors facilitate the induction of hippocampal long-term potentiation by modulating NMDA responses. J. Neurophysiol. 70, 1260–1263 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Murphy, K. P. S. J., Williams, J. H., Bettache, N. & Bliss, T. V. P. Photolytic release of nitric oxide modulates NMDA receptor-mediated transmission but does not induce long-term potentiation at hippocampal synapses. Neuropharmacology 33, 1375–1385 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Fong, D. K., Rao, A., Crump, F. T. & Craig, A. M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J. Neurosci. 22, 2153–2164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nature Neurosci. 7, 695–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery, J., Selcher, J., Hanson, J. & Madison, D. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. BMC Neurosci. 6, 48 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stanton, P. K. Transient protein kinase C activation primes long-term depression and suppresses long-term potentiation of synaptic transmission in hippocampus. Proc. Natl Acad. Sci. USA 92, 1724–1728 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Izumi, Y., Clifford, D. B. & Zorumski, C. F. Inhibition of long-term potentiation by NMDA-mediated nitric oxide release. Science 257, 1273–1276 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Hsu, K. S., Ho, W. C., Huang, C. C. & Tsai, J. J. Transient removal of extracellular Mg2+ elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation. J. Neurophysiol. 84, 1279–1288 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gisabella, B., Rowan, M. J. & Anwyl, R. Mechanisms underlying the inhibition of long-term potentiation by preconditioning stimulation in the hippocampus in vitro. Neuroscience 121, 297–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Waxman, E. A. & Lynch, D. R. N-methyl-D-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. J. Biol. Chem. 280, 29322–29333 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Synaptic enhancement in fascia dentate: cooperativity among coactive afferents. Brain Res. 157, 277–293 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Frey, U., Schollmeier, K., Reymann, K. G. & Seidenbecher, T. Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience 67, 799–807 (1995). This important paper demonstrated that the apparent saturation of LTP by repeated HFS can, in some situations at least, simply reflect a transient metaplastic inhibition of further LTP. Thus, additional LTP can be obtained by an HFS given after a rest period.

    Article  CAS  PubMed  Google Scholar 

  35. Moody, T. D., Carlisle, H. J. & O'Dell, T. J. A nitric oxide-independent and β-adrenergic receptor-sensitive form of metaplasticity limits θ-frequency stimulation-induced LTP in the hippocampal CA1 region. Learn. Mem. 6, 619–633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gold, J. I. & Bear, M. F. A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc. Natl Acad. Sci. USA 91, 3941–3945 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alkon, D. L. et al. Learning and memory. FENS Study Group. Brain Res. Brain Res. Rev. 16, 193–220 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Bear, M. F. Mechanism for a sliding synaptic modification threshold. Neuron 15, 1–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Deisseroth, K., Bito, H., Schulman, H. & Tsien, R. W. A molecular mechanism for metaplasticity. Curr. Biol. 5, 1334–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Mauceri, D., Cattabeni, F., Di Luca, M. & Gardoni, F. Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines. J. Biol. Chem. 279, 23813–23821 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mayford, M., Wang, J., Kandel, E. R. & O'Dell, T. J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Fukunaga, K., Stoppini, L., Miyamoto, E. & Muller, D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 268, 7863–7867 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Krucker, T. et al. Targeted disruption of RC3 reveals a calmodulin-based mechanism for regulating metaplasticity in the hippocampus. J. Neurosci. 22, 5525–5535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L. et al. Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II. J. Neurosci. 25, 7697–7707 (2005). This paper provided a key demonstration that phosphorylation of the Thr305/Thr306 site on αCaMKII mediates the metaplastic inhibition of LTP by synaptic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cooke, S. F. et al. Autophosphorylation of αCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J. Physiol. 574, 805–818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, A. S., Coussens, C. M., Raymond, C. R. & Abraham, W. C. Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. J. Neurophysiol. 82, 3139–3148 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Ireland, D. R. & Abraham, W. C. Group I mGluRs increase excitability of hippocampal CA1 pyramidal neurons by a PLC-independent mechanism. J. Neurophysiol. 88, 107–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ireland, D. R., Guevremont, D., Williams, J. M. & Abraham, W. C. Metabotropic glutamate receptor-mediated depression of the slow afterhyperpolarization is gated by tyrosine phosphatases in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 92, 2811–2819 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Oh, M. C., Derkach, V. A., Guire, E. S. & Soderling, T. R. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281, 752–758 (2006). This study provided an important hippocampal demonstration that trafficking of AMPARs to the extrasynaptic membrane can prime synapses for enhanced LTP in response to a subsequent HFS.

    Article  CAS  PubMed  Google Scholar 

  50. Gao, C., Sun, X. & Wolf, M. E. Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J. Neurochem. 98, 1664–1677 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Grooms, S. Y. et al. Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J. Neurosci. 26, 8339–8351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O'Connor, J. J., Rowan, M. J. & Anwyl, R. Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367, 557–559 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. MacDonald, J. F., Jackson, M. F. & Beazely, M. A. G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim. Biophys. Acta 1768, 941–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Christie, B. R., Stellwagen, D. & Abraham, W. C. Reduction of the threshold for long-term potentiation by prior theta-frequency synaptic activity. Hippocampus 5, 52–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Cohen, A. S., Raymond, C. R. & Abraham, W. C. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus 8, 160–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Blank, T., Nijholt, I., Eckart, K. & Spiess, J. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J. Neurosci. 22, 3788–3794 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen, A. S. & Abraham, W. C. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J. Neurophysiol. 76, 953–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Matsuda, Y., Marzo, A. & Otani, S. The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. J. Neurosci. 26, 4803–4810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, X., Zhao, Y. & Wolf, M. E. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci. 25, 7342–7351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bortolotto, Z. A., Bashir, Z. I., Davies, C. H. & Collingridge, G. L. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740–743 (1994). This paper provided the first demonstration that activation of mGluRs can metaplastically promote subsequent LTP induction, in this case by changing the state of the synapses so as to render further activation of mGluRs unnecessary for LTP.

    Article  CAS  PubMed  Google Scholar 

  61. Bortolotto, Z. A. et al. Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. J. Neurosci. Methods 59, 19–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Bortolotto, Z. A. et al. The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors. Neuropharmacology 49, 13–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Bortolotto, Z. A. & Collingridge, G. L. Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. Neuropharmacology 37, 535–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Bortolotto, Z. A. & Collingridge, G. L. A role for protein kinase C in a form of metaplasticity that regulates the induction of long-term potentiation at CA1 synapses of the adult rat hippocampus. Eur. J. Neurosci. 12, 4055–4062 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Raymond, C. R., Thompson, V. L., Tate, W. P. & Abraham, W. C. Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J. Neurosci. 20, 969–976 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maggio, N. & Segal, M. Unique regulation of long term potentiation in the rat ventral hippocampus. Hippocampus 17, 10–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Mellentin, C., Jahnsen, H. & Abraham, W. C. Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices. Neuropharmacology 52, 118–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nature Rev. Neurosci. 5, 931–942 (2004).

    Article  CAS  Google Scholar 

  69. Tsokas, P., Ma, T., Iyengar, R., Landau, E. M. & Blitzer, R. D. Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. J. Neurosci. 27, 5885–5894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, F., Chotiner, J. K. & Steward, O. The mRNA for elongation factor 1α is localized in dendrites and translated in response to treatments that induce long-term depression. J. Neurosci. 25, 7199–7209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rush, A. M., Wu, J. Q., Rowan, M. J. & Anwyl, R. Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus in vitro. J. Neurosci. 22, 6121–6128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982). This seminal paper described a model designed to account for the various features of experience-dependent plasticity in the visual cortex. Now known as the BCM model, the work inspired numerous experimental tests of its essential principles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holland, L. L. & Wagner, J. J. Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. J. Neurosci. 18, 887–894 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, H. & Wagner, J. J. Priming-induced shift in synaptic plasticity in the rat hippocampus. J. Neurophysiol. 82, 2024–2028 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Roth-Alpermann, C., Morris, R. G. M., Korte, M. & Bonhoeffer, T. Homeostatic shutdown of long-term potentiation in the adult hippocampus. Proc. Natl Acad. Sci. USA 103, 11039–11044 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abraham, W. C., Mason-Parker, S. E., Bear, M. F., Webb, S. & Tate, W. P. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc. Natl Acad. Sci. USA 98, 10924–10929 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frey, U. & Morris, R. G. M. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997). This paper described the concept of synaptic tagging for the first time. Experimental evidence was presented for an interaction between a strongly activated input pathway and a weakly activated pathway. This interaction promotes protein-synthesis-dependent LTP in the weak pathway.

    Article  CAS  PubMed  Google Scholar 

  79. Frey, U. & Morris, R. G. M. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Frey, S., Bergado-Rosado, J., Seidenbecher, T., Pape, H. C. & Frey, J. U. Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J. Neurosci. 21, 3697–3703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sajikumar, S. & Frey, J. U. Resetting of 'synaptic tags' is time- and activity-dependent in rat hippocampal Ca1 in vitro. Neuroscience 129, 503–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Young, J. Z. & Nguyen, P. V. Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J. Neurosci. 25, 7221–7231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Young, J. Z., Isiegas, C., Abel, T. & Nguyen, P. V. Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur. J. Neurosci. 23, 1784–1794 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sajikumar, S., Navakkode, S. & Frey, J. U. Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J. Neurosci. 27, 5068–5080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sajikumar, S., Navakkode, S., Sacktor, T. C. & Frey, J. U. Synaptic tagging and cross-tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. J. Neurosci. 25, 5750–5756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kauderer, B. S. & Kandel, E. R. Capture of a protein synthesis-dependent component of long-term depression. Proc. Natl Acad. Sci. USA 97, 13342–13347 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Govindarajan, A., Kelleher, R. J. & Tonegawa, S. A clustered plasticity model of long-term memory engrams. Nature Rev. Neurosci. 7, 575–583 (2006).

    Article  CAS  Google Scholar 

  89. Sajikumar, S., Navakkode, S., Korz, V. & Frey, J. U. Cognitive and emotional information processing: protein synthesis and gene expression. J. Physiol. 584, 389–400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Woo, N. H. & Nguyen, P. V. Protein synthesis is required for synaptic immunity to depotentiation. J. Neurosci. 23, 1125–1132 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akirav, I. & Richter-Levin, G. Priming stimulation in the basolateral amygdala modulates synaptic plasticity in the rat dentate gyrus. Neurosci. Lett. 270, 83–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Nakao, K., Matsuyama, K., Matsuki, N. & Ikegaya, Y. Amygdala stimulation modulates hippocampal synaptic plasticity. Proc. Natl Acad. Sci. USA 101, 14270–14275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frey, S., Bergado, J. A. & Frey, J. U. Modulation of late phases of long-term potentiation in rat dentate gyrus by stimulation of the medial septum. Neuroscience 118, 1055–1062 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Bergado, J. A., Frey, S., Lopez, J., Almaguer-Melian, W. & Frey, J. U. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiol. Learn. Mem. 88, 331–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Rev. Neurosci. 4, 885–900 (2003).

    Article  CAS  Google Scholar 

  97. Magee, J. C. & Johnston, D. Plasticity of dendritic function. Curr. Opin. Neurobiol. 15, 334–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  Google Scholar 

  99. Kim, S. J. & Linden, D. J. Ubiquitous plasticity and memory storage. Neuron 56, 582–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Sah, P. & Bekkers, J. M. Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J. Neurosci. 16, 4537–4542 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E. M. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1414 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Le Ray, D., De Sevilla, D. F., Porto, A. B., Fuenzalida, M. & Buno, W. Heterosynaptic metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus. Hippocampus 14, 1011–1025 (2004).

    Article  PubMed  Google Scholar 

  103. Kim, J., Jung, S.-C., Clemens, A. M., Petralia, R. S. & Hoffman, D. A. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54, 933–947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Z. R., Xu, N. L., Wu, C. P., Duan, S. M. & Poo, M. M. Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron 37, 463–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Mittmann, W. & Hausser, M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar purkinje cells. J. Neurosci. 27, 5559–5570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Kullmann, D. M. & Lamsa, K. P. Long-term synaptic plasticity in hippocampal interneurons. Nature Rev. Neurosci. 8, 687–699 (2007).

    Article  CAS  Google Scholar 

  108. Pitler, T. A. & Alger, B. E. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci. 12, 4122–4132 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wigstrom, H. & Gusstafsson, B. Facilitated induction of long-lasting potentiation during blockade of inhibition. Nature 301, 603–604 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Kerr, D. S. & Abraham, W. C. Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. Proc. Natl Acad. Sci. USA 92, 11637–11641 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, Y. B., Disterhoft, J. F. & Slater, N. T. Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. J. Neurophysiol. 69, 1000–1004 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Carlson, G., Wang, Y. & Alger, B. E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neurosci. 5, 723–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Azad, S. C. et al. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J. Neurosci. 24, 9953–9961 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chevaleyre, V. & Castillo, P. E. Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43, 871–881 (2004). This paper characterized a novel mechanism of metaplasticity, namely the endocannabinoid-mediated long-term depression of GABA release.

    Article  CAS  PubMed  Google Scholar 

  118. Chevaleyre, V., Heifets, B. D., Kaeser, P. S., Sudhof, T. C. & Castillo, P. E. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1α. Neuron 54, 801–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Duffy, S. N., Craddock, K. J., Abel, T. & Nguyen, P. V. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn. Mem. 8, 26–34 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Foster, T. C., Fugger, H. N. & Cunningham, S. G. Receptor blockade reveals a correspondence between hippocampal-dependent behavior and experience-dependent synaptic enhancement. Brain Res. 871, 39–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, J. J., Foy, M. R. & Thompson, R. F. Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc. Natl Acad. Sci. USA 93, 4750–4753 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garcia, R., Musleh, W., Tocco, G., Thompson, R. F. & Baudry, M. Time-dependent blockade of STP and LTP in hippocampal slices following acute stress in mice. Neurosci. Lett. 233, 41–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Maggio, N. & Segal, M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J. Neurosci. 27, 5757–5765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, J. J. & Yoon, K. S. Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21, 505–509 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Diamond, D. M., Park, C. R. & Woodson, J. C. Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 14, 281–291 (2004).

    Article  PubMed  Google Scholar 

  128. Abraham, W. C. Stress-related phenomena. Hippocampus 14, 675–676 (2004).

    Article  PubMed  Google Scholar 

  129. Shors, T. J. & Thompson, R. F. Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the stratum-radiatum of rat hippocampus. Synapse 11, 262–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. Sacchetti, B. et al. Long-lasting hippocampal potentiation and contextual memory consolidation. Eur. J. Neurosci. 13, 2291–2298 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Sacchetti, B., Scelfo, B., Tempia, F. & Strata, P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42, 973–982 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Sacchetti, B. et al. Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur. J. Neurosci. 15, 143–150 (2002).

    Article  PubMed  Google Scholar 

  133. Kirkwood, A., Rioult, M. G. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Philpot, B. D., Espinosa, J. S. & Bear, M. F. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J. Neurosci. 23, 5583–5588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Quinlan, E. M., Olstein, D. H. & Bear, M. F. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl Acad. Sci. USA 96, 12876–12880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neurosci. 2, 352–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A. & Traynelis, S. E. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Philpot, B. D., Cho, K. K. A. & Bear, M. F. Obligatory role of NR2A for metaplasticity in visual cortex. Neuron 53, 495–502 (2007). This work provided an elegant demonstration that the subunit composition of NMDARs is critical for experience-dependent alterations in plasticity thresholds in the visual cortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Disterhoft, J. F., Golden, D. T., Read, H. R., Coulter, D. A. & Alkon, D. L. AHP reduction in rabbit hippocampal neurons during conditioning correlate with acquisition of the learned response. Brain Res. 462, 118–125 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Alkon, D. L. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model. Science 205, 810–816 (1979).

    Article  CAS  PubMed  Google Scholar 

  142. Kandel, E. R. & Schwartz, J. H. Molecular biology of learning: modulation of transmitter release. Science 218, 433–443 (1982).

    Article  CAS  PubMed  Google Scholar 

  143. Moyer, J. R. Jr, Thompson, L. T. & Disterhoft, J. F. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J. Neurosci. 16, 5536–5546 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Oh, M. M., Kuo, A. G., Wu, W. W., Sametsky, E. A. & Disterhoft, J. F. Watermaze learning enhances excitability of CA1 pyramidal neurons. J. Neurophysiol. 90, 2171–2179 (2003).

    Article  PubMed  Google Scholar 

  145. Saar, D., Grossman, Y. & Barkai, E. Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur. J. Neurosci. 10, 1518–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Cohen-Matsliah, S. I., Brosh, I., Rosenblum, K. & Barkai, E. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes. J. Neurosci. 27, 12584–12589 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brosh, I., Rosenblum, K. & Barkai, E. Learning-induced modulation of SK channels-mediated effect on synaptic transmission. Eur. J. Neurosci. 26, 3253–3260 (2007).

    Article  PubMed  Google Scholar 

  148. Lebel, D., Grossman, Y. & Barkai, E. Olfactory learning modifies predisposition for long-term potentiation and long-term depression induction in the rat piriform (olfactory) cortex. Cereb. Cortex 11, 485–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Quinlan, E. M., Lebel, D., Brosh, I. & Barkai, E. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41, 185–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Disterhoft, J. F. & Oh, M. M. Learning, aging and intrinsic neuronal plasticity. Trends Neurosci. 29, 587–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Zelcer, I. et al. A cellular correlate of learning-induced metaplasticity in the hippocampus. Cereb. Cortex 16, 460–468 (2006). This paper provided clear evidence for a type of learning-induced metaplasticity that promotes subsequent learning of other behaviours, mediated by regulation of the sAHP.

    Article  PubMed  Google Scholar 

  152. Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279, 40545–40559 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Levenson, J. M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 15763–15773 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Miller, C. A., Campbell, S. L. & Sweatt, J. D. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem. 17 Sep 2007 [epub ahead of print].

  155. Clem, R. L., Celikel, T. & Barth, A. L. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 319, 101–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003). This paper provided an important demonstration that sensory experience can cause NMDAR-dependent LTP. The LTP saturates owing to an NMDAR-dependent inhibition of additional mGluR-mediated potentiation.

    Article  CAS  PubMed  Google Scholar 

  157. Albensi, B. C. & Janigro, D. Traumatic brain injury and its effects on synaptic plasticity. Brain Inj. 17, 653–663 (2003).

    Article  PubMed  Google Scholar 

  158. Schwarzbach, E., Bonislawski, D. P., Xiong, G. & Cohen, A. S. Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury. Hippocampus 16, 541–550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, S., Kee, N., Preston, E. & Wojtowicz, J. M. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp. Brain Res. 165, 250–260 (2005).

    Article  PubMed  Google Scholar 

  160. Goussakov, I. V., Fink, K., Elger, C. E. & Beck, H. Metaplasticity of mossy fiber synaptic transmission involves altered release probability. J. Neurosci. 20, 3434–3441 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kleschevnikov, A. M. et al. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Picconi, B. et al. Pathological synaptic plasticity in the striatum: implications for Parkinson's disease. Neurotoxicology 26, 779–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Kung, V. W. S., Hassam, R., Morton, A. J. & Jones, S. Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington's disease. Neuroscience 146, 1571–1580 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  166. Thiagarajan, T. C., Lindskog, M. & Tsien, R. W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Slutsky, I., Sadeghpour, S., Li, B. & Liu, G. S. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44, 835–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Eid, T., Kovacs, I., Spencer, D. D. & de Lanerolle, N. C. Novel expression of AMPA-receptor subunit GluR1 on mossy cells and CA3 pyramidal neurons in the human epileptogenic hippocampus. Eur. J. Neurosci. 15, 517–527 (2002).

    Article  PubMed  Google Scholar 

  169. He, H. Y., Hodos, W. & Quinlan, E. M. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci. 26, 2951–2955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hubener, M. Prior experience enhances plasticity in adult visual cortex. Nature Neurosci. 9, 127–132 (2006). This important paper demonstrated that the adult visual cortex is capable of substantial experience-dependent plasticity if it has previously been primed by brief exposure to altered visual experience.

    Article  CAS  PubMed  Google Scholar 

  171. He, H.-Y., Ray, B., Dennis, K. & Quinlan, E. M. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nature Neurosci. 10, 1134–1136 (2007). This paper provided a clinically important demonstration that amblyopia that has been induced by MD can be reversed if the cortex is first primed by putting animals in a dark environment just prior to the reversal procedures.

    Article  CAS  PubMed  Google Scholar 

  172. Sale, A. et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nature Neurosci. 10, 679–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Ullal, G. R., Ninchoji, T. & Uemura, K. Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res. 3, 236–247 (1989).

    Article  Google Scholar 

  174. Hesp, B. R., Clarkson, A. N., Sawant, P. M. & Kerr, D. S. Domoic acid preconditioning and seizure induction in young and aged rats. Epilepsy Res. 76, 103–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. Nature Rev. Neurosci. 7, 437–448 (2006).

    Article  CAS  Google Scholar 

  176. Schaller, B. & Graf, R. Cerebral ischemic preconditioning. J. Neurol. 249, 1503–1511 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Dirnagl, U., Simon, R. P. & Hallenbeck, J. M. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Thiagarajan, T. C., Lindskog, M., Malgaroli, A. & Tsien, R. W. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 52, 156–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005). This paper detailed an innovative network model that incorporates multiple metaplastic states into the functionality of the synapses so as to prolong the duration of memories stored in the network.

    Article  CAS  PubMed  Google Scholar 

  180. Fusi, S. & Abbott, L. F. Limits on the memory storage capacity of bounded synapses. Nature Neurosci. 10, 485–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Montgomery, J. M. & Madison, D. V. Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosci. 27, 744–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Ward, B. et al. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron 52, 649–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Yang, X. D. & Faber, D. S. Initial synaptic efficacy influences induction and expression of long-term changes in transmission. Proc. Natl Acad. Sci. USA 88, 4299–4303 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Barrionuevo, G., Schottler, F. & Lynch, G. The effects of repetitive low-frequency stimulation on control and 'potentiated' synaptic responses in the hippocampus. Life Sci. 27, 2385–2391 (1980).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Benuskova, L. & Abraham, W. STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. J. Comp. Neurosci. 22, 129–133 (2007).

    Article  Google Scholar 

  187. Benuskova, L., Diamond, M. E. & Ebner, F. F. Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex. Proc. Natl Acad. Sci. USA 91, 4791–4795 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003).

    Article  PubMed  Google Scholar 

  189. Bear, M. F., Cooper, L. N. & Ebner, F. F. A physiological basis for a theory of synapse modification. Science 237, 42–48 (1987).

    Article  CAS  PubMed  Google Scholar 

  190. Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shouval, H. Z., Castellani, G. C., Blais, B. S., Yeung, L. C. & Cooper, L. N. Converging evidence for a simplified biophysical model of synaptic plasticity. Biol. Cybern. 87, 383–391 (2002).

    Article  PubMed  Google Scholar 

  192. Yeung, L. C., Shouval, H. Z., Blais, B. S. & Cooper, L. N. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc. Natl Acad. Sci. USA 101, 14943–14948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Preparation of this Review was assisted by a James Cook Fellowship from the Royal Society of New Zealand. Metaplasticity research in the author's laboratory has been supported by grants from the Health Research Council of New Zealand, the New Zealand Marsden Fund and the University of Otago Research Committee. I thank M. Bear for many years of discussion and collaboration on metaplasticity topics. I thank D. Ireland, J. Wagner and E. Quinlan for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wickliffe C. Abraham.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Down syndrome

Fragile X-linked mental retardation syndrome

Huntington's disease

Parkinson's disease

FURTHER INFORMATION

Wickliffe Abraham's homepage

Glossary

Long-term potentiation

(LTP). A long-lasting and activity-dependent increase in synaptic efficacy. Canonically it requires activation of the NMDAR subtype of glutamate receptors; however, different forms of LTP caused by the activation of other receptor subtypes also occur.

Long-term depression

(LTD). The converse of LTP: in LTD there is a long-lasting and activity-dependent decrease in synaptic efficacy.

Excitotoxicity

Cellular toxicity involving the activation of glutamate receptors in the CNS. Excessive activation of these receptors by high concentrations of glutamate or by neurotoxins leads to cell death.

Tetanus

A bout of HFS used to elicit activity-dependent synaptic plasticity. The frequency and duration of the stimulation varies across protocols.

Uncaging

The release of a molecule from a photolabile binding partner known as a cage. Cages typically inhibit the biological activity of the bound ('caged') molecule. A brief flash of light of the appropriate wavelength can photochemically disrupt the structure of the binding partner and render the now uncaged molecule biologically active.

Calcium/calmodulin-dependent protein kinase II

(CaMKII). A multi-functional serine/threonine kinase that is activated by a Ca2+/calmodulin complex. Once activated, CaMKII can autophosphorylate, leading to autonomous (Ca2+-independent) activity and calmodulin trapping. The α isoform is a major component of the postsynaptic density and a key component of the LTP induction process.

Slow afterhyperpolarization

(slow AHP). A type of membrane hyperpolarization that can last for seconds. It is mediated by the opening of Ca2+-dependent K+ channels and is generated in response to the firing of one or more postsynaptic Na+ or Ca2+ action potentials.

G-protein-coupled receptors

(GPCRs). A large family of transmembrane receptors that couple extracellular signalling molecules to an intracellular signalling cascade which they trigger by activating a G protein.

Depotentiation

A reversal of LTP that brings synaptic efficacy to a baseline level. There is growing evidence that this process involves mechanisms that are different to those that mediate LTD.

Antidromic stimulation

The activation of neuronal cell bodies and dendrites by back-propagating action potentials triggered by electrical stimulation of the cells' axons.

Plasticity-related proteins

(PRPs). Proteins that are synthesized in response to synaptic activation or postsynaptic activity and that are necessary for establishing the persistent forms of LTP and LTD.

Back-propagating action potentials

Action potentials that are initiated at the soma or the axon hillock and that propagate back into the dendrites, where they shape the integration of synaptic activity and influence the induction of synaptic plasticity.

Active zone

A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It is the site of synaptic vesicle clustering and docking and resultant neurotransmitter release.

Critical period

A finite but modifiable developmental time window during which experience provides information that is essential for normal development and permanently alters brain structure and performance.

Eye-blink conditioning

A classical conditioning paradigm that is commonly used for the study of learning. In it, an eye-blink, or the retraction of the nictitating membrane over the eye, is reflexively conditioned by pairing a conditioned neutral stimulus such as a tone with an aversive stimulus such as an air-puff to the eye. After sufficient pairings the conditioned stimulus can elicit the eye-blink response by itself.

Memory consolidation

A protein-synthesis-dependent process of memory stabilization occuring over hours in animals and for up to years in humans that renders the memory resistant to change.

Amblyopia

Poor vision, usually occurring in one eye, that is associated with a prolonged period of indistinct visual stimulation or visual system dysfunction during development.

Ischaemic preconditioning

(IPC). A phenomenon observed both clinically and experimentally whereby a mild ischaemic event 'primes' a tissue by activating endogenous cellular protective mechanisms that amelioriate the neurotoxic outcome of a later, more severe ischaemic event.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, W. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9, 387 (2008). https://doi.org/10.1038/nrn2356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing