Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Life-on-a-chip

Abstract

Mechanistic studies of cellular processes are usually carried out with large populations of cells. However, parameters that are measured as averages of large populations can be misleading. For instance, an apparently linear response to a signal could, in fact, reflect an increasing number of cells in the population that have switched from 'off' to 'on', rather than a graded increase in response by all the cells. At present, the study of single cells is challenging, but new technologies mean it might soon be a reality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterogeneity in cellular response systems.
Figure 2: Integrated microsystem schematic.
Figure 3: Heterogeneity in timing of infection events.
Figure 4: Expected MLSC outcomes.
Figure 5: MLSC technology development.

Similar content being viewed by others

References

  1. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Scienc e 297, 1183–1186 (2002).

    Article  Google Scholar 

  4. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gally, D. L. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J. Bacteriol. 175, 6186–6193 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwan, W. R., Seifert, H. S. & Duncan, J. L. Growth conditions mediate differential transcription of fim genes involved in phase variation of type 1 pili. J. Bacteriol. 174, 2367–2375 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orndorff, P. E. & Falkow, S. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli. J. Bacteriol. 159, 736–744 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Klemm, P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5, 1389–1393 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arkin, A., Ross, J. & McAdams H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maloney, P. C. & Rotman, B. Distribution of suboptimally induces -D-galactosidase in Escherichia coli. The enzyme content of individual cells. J. Mol. Biol. 73, 77–91 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. Siegele, D. A. & Hu, J. C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl Acad. Sci. USA 94, 8168–8172 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamme, F. et al. Single-cell microarray analysis in Hippocampus CA1: demonstration and validation of cellular heterogeneity. Neuroscience 23, 3607–3615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrell, J. E. & Xiong, W. Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11, 227–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, X. H., Wan, Q., Kyriacou, S. V., Brownlow, W. J. & Nowak, M. E. Direct observation of substrate induction of resistance mechanism in Pseudomonas aeruginosa using single live cell imaging. Biochem. Biophys. Res. Commun. 305, 941–949 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hakkila, K., Maksimow, M., Rosengren, A., Karp, M. & Virta, M. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. J. Microbiol. Methods 54, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Weijer, C. J. Visualizing signals moving in cells. Science 300, 96–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tolker-Nielsen, T. et al. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27, 1099–1105 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Holmstrom K., Tolker-Nielsen, T. & Molin, S. Physiological states of individual Salmonella typhimurium cells monitored by in situ reverse transcription-PCR. J. Bacteriol. 181, 1733–1738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nwoguh, C. E., Harwood, C. R. & Barer, M. R. Detection of induced β-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol. Microbiol. 17, 545–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Dovichi, N. J. & Pinkel, D. Analytical biotechnology. Tools to characterize cells and their contents. Curr. Opin. Biotechnol. 14, 3–4 (2003).

    Article  CAS  Google Scholar 

  24. Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Non-Uniform Electric Fields. (Cambridge Univ. Press, New York, 1978).

    Google Scholar 

  25. Meldrum, D. R. & Holl, M. R. Tech.Sight. Microfluidics. Microscale bioanalytical systems. Science 297, 1197–1198 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Weigl, B. H., Bardell, R. L. & Cabrera, C. R. Lab-on-a-chip for drug development. Adv. Drug Deliv. Rev. 55, 349–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Jain, K. K. Post-genomic applications of lab-on-a-chip and microarrays. Trends Biotechnol. 20, 184–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3249–3254 (2003).

    Article  Google Scholar 

  29. Windman, T. O., Wyatt, B. J. & Hayes, M. A. Microfluidics for ultrasmall-volume biological analysis. Adv. Chromatogr. 42, 241–267 (2003).

    CAS  PubMed  Google Scholar 

  30. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. McCarter, L. & Silverman, M. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4, 1057–1062 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. O'Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V. J. & Kolter, R. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182, 425–431 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Otto, K., Norbeck, J., Larsson, T., Karlsson, K -A. & Hermansson, M. Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J. Bacteriol. 183, 2445–2453 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13, 264–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Shrayer, D. P., Lukoff, H., King, T. & Calabresi, P. The effect of taurolidine on adherent and floating subpopulations of melanoma cells. Anticancer Drugs 14, 295–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Lutz, B. R., Chen, J. & Schwartz, D. T. Microfluidics without microfabrication. Proc. Natl Acad. Sci. USA 100, 4395–4398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gascoyne, P. R. & Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hughes, M. P. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23, 2569–2582 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Chabinyc, M. L. et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73, 4491–4498 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. & Quake, S. R. A microfabricated fluorescence-activated cell sorter. Nature Biotechnol. 17, 1109–1111 (1999).

    Article  CAS  Google Scholar 

  41. Marquardt, B. J., Vahey, P. G., Synovec, R. E. & Burgess, L. W. A Raman waveguide detector for liquid chromatography. Anal. Chem. 71, 4808–4814 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Vahey, P. G. et al. Toward a fully integrated positive-pressure driven microfabricated liquid analyzer. Anal. Chem. 74, 177–184 (2001).

    Article  Google Scholar 

  43. Nenninger, G. G., Clendenning, J. B., Furlong, C. E. & Yee, S. S. Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration. Sens. Actuators B Chem. 51, 38–45 (1998).

    Article  CAS  Google Scholar 

  44. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lidstrom, M. E. in The Prokaryotes, An Evolving Electronic Resource for the Microbiological Community. (eds Balows et al., Springer–Verlag, New York) [online], (cited 15 Sep 2003), <http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=300&initsec=02_01> (2003).

    Google Scholar 

  46. Park, P. U., McVey, M. & Guarente, L. Separation of mother and daughter cells. Methods Enzymol. 351, 468–477 (2002).

    Article  PubMed  Google Scholar 

  47. Hu, S. et al. Cell cycle-dependent protein fingerprint from a single cancer cell: image cytometry coupled with single-cell capillary sieving electrophoresis. Analyt. Chem. (in the press).

  48. Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Böhringer, K. F. Surface modification and modulation in microstructures: controlling protein adsorption, monolayer desorption, and micro-self-assembly. IOP J. Micromech. Microeng. 13, S1–S10 (2003).

    Article  Google Scholar 

  50. Sweet, I. R. et al. Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol. Ther. 4, 661–672 (2002).

    Article  PubMed  Google Scholar 

  51. Tlili, C. et al. Fibroblast cells: a sensing bioelement for glucose detection by impedance spectroscopy. Anal. Chem. 75, 3340–3344 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Michels, D. A., Hu, S., Schoenherr, R. M., Eggertson, M. J. & Dovichi, N. J. Fully automated two-dimensional capillary electrophoresis for high sensitivity protein analysis. Mol. Cell. Proteomics 1, 69–74 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this article has been supported by funding through the National Human Genome Research Institute (NHGRI) Centers of Excellence in Genomic Sciences programme. We wish to acknowledge the important contributions of other Microscale Life Sciences Center investigators to this work: K. Böhringer, L. Burgess, B. Cookson, N. Dovichi, M. Holl, B. Marquardt, J. Mittler, J. Mullins, V. Vogel and D. Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Lidstrom.

Supplementary information

41579_2003_BFnrmicro755_MOESM1_ESM.pdf

Online Figure | MLSC organizational pyramid. For the single-cell analysis group of the MLSC, application needs drive innovation in module and system-level development, and foundation technologies support system design and integration activities. The use of new technology creates new areas of experimental investigation. (PDF 24 kb)

Related links

Related links

FURTHER INFORMATION

Mary E. Lidstrom laboratory

Deirdre R. Meldrum laboratory

Cell Systems Initiative

GOLD Genomes OnLine Database

MEMS

Microscale Life Sciences Center

Microarrays and microfluidics

Molecular Sciences Institute

Nanosystemes Biology Alliance

Glossary

DIELECTROPHORESIS

The induced motion of polarizable particles in non-uniform electric fields.

ELECTROIMPEDENCE SPECTROSCOPIC METHODS

An analytical technique that supplies frequency response information for a variety of conducting materials. A signature is obtained that can be related to specific changes in conducting properties.

MICROANALYTICAL SPECTROSCOPIC METHODS

Detection methods that are based on analysis of the energies and wavelengths of radiation emitted by atoms and molecules when particular physical conditions are applied to them, and which use small (sub-microlitre) volumes and low concentrations of analyte.

MICROFLUIDICS

Fluidics in structures on micron and smaller-length scales, resulting in low turbulence, with laminar flows.

MULTIANALYTE

Multiple chemicals to be analysed.

STOCHASTICITY

Describes a phenomenon that obeys the laws of probability.

SURFACE PLASMON RESONANCE

(SPR). A phenomenon that occurs when light is reflected off thin metal films. Although incident light is totally reflected, the electromagnetic field component penetrates a short (tens of nanometres) distance into a medium of a lower refractive index, thereby creating a type of wave that is known as an exponentially detenuating evanescent wave. If the interface between the media is coated with a thin layer of metal (gold), and light is monochromatic and p-polarized, the intensity of the reflected light is reduced at a specific incident angle producing a sharp shadow, called surface plasmon resonance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidstrom, M., Meldrum, D. Life-on-a-chip. Nat Rev Microbiol 1, 158–164 (2003). https://doi.org/10.1038/nrmicro755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing