Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What are the consequences of the disappearing human microbiota?

Abstract

Humans and our ancestors have evolved since the most ancient times with a commensal microbiota. The conservation of indicator species in a niche-specific manner across all of the studied human population groups suggests that the microbiota confer conserved benefits on humans. Nevertheless, certain of these organisms have pathogenic properties and, through medical practices and lifestyle changes, their prevalence in human populations is changing, often to an extreme degree. In this Essay, we propose that the disappearance of these ancestral indigenous organisms, which are intimately involved in human physiology, is not entirely beneficial and has consequences that might include post-modern conditions such as obesity and asthma.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of maternal status on the resident microbiota of the next generation.
Figure 2: Helicobacter pylori prevalence in the United States by age and year of birth.
Figure 3: Interactions between host and microbiota.

References

  1. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iyer, L. M., Aravind, L., Coon, S. L., Klein, D. C. & Koonin, E. V. Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet. 20, 292–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmeister, M. & Martin, W. Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ. Microbiol. 5, 641–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hickman, C. S. in Influence of Cooperative Bacteria on Animal Host Biology (eds McFall-Ngai, M. J., Henderson, B. & Ruby, E. G.) 3–34 (Cambridge Univ. Press, Cambridge, UK, 2005).

    Google Scholar 

  6. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  Google Scholar 

  11. Pei, Z. et al. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250–4255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl Acad. Sci. USA 105, 17994–17999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crowe, C. C., Sanders, W. E. Jr & Longley, S. Bacterial interference. II. Role of the normal throat flora in prevention of colonization by group A. Streptococcus. J. Infect. Dis. 128, 527–532 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Rosebury, T. Microorganisms Indigenous to Man (McGraw Hill, New York, 1962).

    Google Scholar 

  19. Mackowiak, P. A. The normal microbial flora. N. Engl. J. Med. 307, 83–93 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Gordon, H. A. & Pesti, L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pamer, E. G. Immune responses to commensal and environmental microbes. Nature Immunol. 8, 1173–1178 (2007).

    Article  CAS  Google Scholar 

  23. Roos, K., Holm, S. E., Grahn-Hakansson, E. & Lagergren, L. Recolonization with selected α-streptococci for prophylaxis of recurrent streptococcal pharyngotonsillitis — a randomized placebo-controlled multicentre study. Scand. J. Infect. Dis. 28, 459–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Durack, D. T. Prevention of infective endocarditis. N. Engl. J. Med. 332, 38–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, G. J. Dentists are innocent! “Everyday” bacteremia is the real culprit: a review and assessment of the evidence that dental surgical procedures are a principal cause of bacterial endocarditis in children. Pediatr. Cardiol. 20, 317–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Falkow, S. Is persistent bacterial infection good for your health? Cell 124, 699–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Murphy, T. V., Pastor, P., Medley, F., Osterholm, M. T. & Granoff, D. M. Decreased Haemophilus colonization in children vaccinated with Haemophilus influenzae type b conjugate vaccine. J. Pediatr. 122, 517–523 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Segal, S. & Pollard, A. J. Vaccines against bacterial meningitis. Br. Med. Bull. 72, 65–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Falkow, S. Molecular Koch's postulates applied to bacterial pathogenicity — a personal recollection 15 years later. Nature Rev. Microbiol. 2, 67–72 (2004).

    Article  CAS  Google Scholar 

  31. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1995).

    Google Scholar 

  32. Messenger, S. L., Molineux, I. J. & Bull, J. J. Virulence evolution in a virus obeys a trade-off. Proc. R. Soc. Lond. B 266, 1480–1482 (1997).

    Google Scholar 

  33. Michod, R. E. Evolution of the individual. Am. Nat. 150, S5–S21 (1997).

    Article  PubMed  Google Scholar 

  34. Sachs, J. L. & Bull, J. J. Experimental evolution of conflict mediation between genomes. Proc. Natl Acad. Sci. USA 102, 390–395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 449, 843–849 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nash, J. F. Equilibrium points in n-person games. Proc. Natl Acad. Sci. USA 36, 48–49 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nash, J. Non-cooperative games. Ann. Math. 54, 286–295 (1951).

    Article  Google Scholar 

  38. Ma, C.-T., Moore, J. & Turnbull, S. Cheating and equilibrium. Stopping agents from 'cheating.' J. Econ. Theory 46, 355–372 (1988).

    Article  Google Scholar 

  39. Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Smith, J. M. in Evolution and the Theory of Games 10–27 (Cambridge Univ. Press, Cambridge, UK 1982).

    Book  Google Scholar 

  41. Gray, R. H. et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 357, 1149–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Galvani, A. P. Epidemiology meets evolutionary ecology. Trends Ecol. Evol. 18, 132–139 (2003).

    Article  Google Scholar 

  43. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Blaser, M. J. Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 7, 956–960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blaser, M. J. Disappearing microbiota: Helicobacter pylori protection against esophageal adenocarcinoma. Cancer Prev. Res. (Phila. Pa) 1, 308–311 (2008).

    Article  Google Scholar 

  46. Strachan, D. P. Hayfever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nahar, S. et al. Evidence of intra-familial transmission of Helicobacter pylori by PCR-based RAPD fingerprinting in Bangladesh. Eur. J. Clin. Microbiol. Infect. Dis. 28, 767–773 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Flegal, K. M., Graubard, B. I., Williamson, D. F. & Gail, M. H. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298, 2028–2037 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Eder, W., Ege, M. J. & von Mutius, E. The asthma epidemic. N. Engl. J. Med. 355, 2226–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pohl, H. & Welch, H. G. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl Cancer Inst. 97, 142–146 (2005).

    Article  PubMed  Google Scholar 

  51. Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Banatvala, N. et al. The cohort effect and Helicobacter pylori. J. Infect. Dis. 168, 219–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Roosendaal, R. et al. Helicobacter pylori and the birth cohort effect. Evidence of a continuous decrease of infection rates in childhood. Am. J. Gastroenterol. 92, 1480–1482 (1997).

    CAS  PubMed  Google Scholar 

  54. Harvey, R. F. et al. Relationship between the birth cohort pattern of Helicobacter pylori infection and the epidemiology of duodenal ulcer. QJM 95, 519–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Blaser, M. J. & Atherton, J. C. Helicobacter pylori persistence: biology and disease. J. Clin. Invest. 113, 321–333 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Y. & Blaser, M. J. Helicobacter pylori colonization is inversely associated with childhood asthma. J. Infect. Dis. 198, 553–560 (2008).

    Article  PubMed  Google Scholar 

  57. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Odum, L., Petersen, H. D., Andersen, I. B., Hansen, B. F. & Rehfeld, J. F. Gastrin and somatostatin in Helicobacter pylori infected antral mucosa. Gut 35, 615–618 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanno, T. et al. Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem. Biophys. Res. Commun. 381, 666–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Kuipers, E. J. et al. Long-term sequelae of Helicobacter pylori gastritis. Lancet 345, 1525–1528 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Kuipers, E. J., Perez-Perez, G. I., Meuwissen, S. G. & Blaser, M. J. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J. Natl Cancer Inst. 87, 1777–1780 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Argent, R. H. et al. Toxigenic Helicobacter pylori infection precedes gastric hypochlorhydria in cancer relatives, and H. pylori virulence evolves in these families. Clin. Cancer Res. 14, 2227–2235 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Peek, R. M., Jr. & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer 2, 28–37 (2002).

    Article  CAS  Google Scholar 

  64. Kamangar, F. et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J. Natl Cancer Inst. 98, 1445–1452 (2006).

    Article  PubMed  Google Scholar 

  65. Islami, F. & Kamangar, F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev. Res. (Phila. Pa) 1, 329–338 (2008).

    Article  CAS  Google Scholar 

  66. el-Serag, H. B. & Sonnenberg, A. Opposing time trends of peptic ulcer and reflux disease. Gut 43, 327–333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Howson, C. P., Hiyama, T. & Wynder, E. L. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol. Rev. 8, 1–27 (1986).

    Article  CAS  PubMed  Google Scholar 

  68. Hacker, J. & Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2, 376–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Backert, S. & Selbach, M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 10, 1573–1581 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  71. Nwokolo, C. U., Freshwater, D. A., O'Hare, P. & Randeva, H. S. Plasma ghrelin following cure of Helicobacter pylori. Gut 52, 637–640 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mattsson, A., Lonroth, H., Quiding-Jarbrink, M. & Svennerholm, A. M. Induction of B cell responses in the stomach of Helicobacter pylori-infected subjects after oral cholera vaccination. J. Clin. Invest. 102, 51–56 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robinson, K. et al. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57, 1375–1385 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Lundgren, A. et al. Mucosal FOXP3-expressing CD4+CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect. Immun. 73, 523–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blaser, M. J., Chen, Y. & Reibman, J. Does Helicobacter pylori protect against asthma and allergy? Gut 57, 561–567 (2008).

    Article  PubMed  Google Scholar 

  76. Chen, Y. & Blaser, M. J. Inverse associations of Helicobacter pylori with asthma and allergies. Arch. Intern. Med. 167, 821–827 (2007).

    Article  PubMed  Google Scholar 

  77. Reibman, J. et al. Asthma is inversely associated with Helicobacter pylori status in an urban population. PLoS ONE 3, e4060 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Codolo, G. et al. The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cell Microbiol. 10, 2355–2363 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Del Prete, G. et al. Immunosuppression of TH2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein. J. Allergy Clin. Immunol. 122, 908–913.e5 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Jukes, T. Antibiotics in animal feeds and animal production. Bioscience 22, 526–534 (1972).

    Article  CAS  Google Scholar 

  81. Butaye, P., Devriese, L. A. & Haesebrouck, F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin. Microbiol. Rev. 16, 175–188 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gaskins, H. R., Collier, C. T. & Anderson, D. B. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Sjölund, M. et al. Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann. Intern. Med. 139, 483–487 (2003).

    Article  PubMed  Google Scholar 

  84. Sjölund, M. et al. Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg. Infect. Dis. 11, 1389–1393 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Musher, D. M. et al. Bacteremic and nonbacteremic pneumococcal pneumonia. A prospective study. Medicine (Baltimore) 79, 210–221 (2000).

    Article  CAS  Google Scholar 

  86. MacLeod, L. C. & Kraus, M. R. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J. Exp. Med. 92, 1–9 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Briles, D. E., Novak, L., Hotomi, M., van Ginkel, F. W. & King, J. Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect. Immun. 73, 6945–6951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weinberger, D. M. et al. Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J. Infect. Dis. 197, 1511–1518 (2008).

    Article  PubMed  Google Scholar 

  89. Ghaffar, F. et al. Effect of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae in the first 2 years of life. Clin. Infect. Dis. 39, 930–938 (2004).

    Article  PubMed  Google Scholar 

  90. Albrich, W. C., Baughman, W., Schmotzer, B. & Farley, M. M. Changing characteristics of invasive pneumococcal disease in Metropolitan Atlanta, Georgia, after introduction of a 7-valent pneumococcal conjugate vaccine. Clin. Infect. Dis. 44, 1569–1576 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Veenhoven, R. et al. Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media: a randomised study. Lancet 361, 2189–2195 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Madhi, S. A. et al. Long-term effect of pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae and associated interactions with Staphylococcus aureus and Haemophilus influenzae colonization in HIV-infected and HIV-uninfected children. J. Infect. Dis. 196, 1662–1666 (2007).

    Article  PubMed  Google Scholar 

  93. Bogaert, D. et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 363, 1871–1872 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Regev-Yochay, G. et al. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292, 716–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Regev-Yochay, G. et al. Does pneumococcal conjugate vaccine influence Staphylococcus aureus carriage in children? Clin. Infect. Dis. 47, 289–291 (2008).

    Article  PubMed  Google Scholar 

  96. Selva, L. et al. Killing niche competitors by remote-control phage induction: the case of Streptococcus pneumoniae–Staphylococcus aureus interference. Proc. Natl Acad. Sci. USA 106, 1234–1238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lysenko, E. S., Ratner, A. J., Nelson, A. L. & Weiser, J. N. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog. 1, e1 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Regev-Yochay, G. et al. The pneumococcal pilus predicts the absence of Staphylococcus aureus co-colonization in pneumococcal carriers. Clin. Infect. Dis. 48, 760–763 (2009).

    Article  PubMed  Google Scholar 

  99. Herold, B. C. et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279, 593–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Dufour, P. et al. Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin. Infect. Dis. 35, 819–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Tindberg, Y. et al. Helicobacter pylori infection in Swedish school children: lack of evidence of child-to-child transmission outside the family. Gastroenterology 121, 310–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Rothenbacher, D., Bode, G. & Brenner, H. History of breastfeeding and Helicobacter pylori infection in pre-school children: results of a population-based study from Germany. Int. J. Epidemiol. 31, 632–637 (2002).

    Article  PubMed  Google Scholar 

  103. Andersson, A. F. et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3, e2836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, N. F., Wickham, M. E., Coombes, B. K. & Finlay, B. B. Crossing the line: selection and evolution of virulence traits. PLoS Pathog. 2, e42 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lenski, R. E. & May, R. M. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J. Theor. Biol. 169, 253–265 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Marini, E. et al. Helicobacter pylori and intestinal parasites are not detrimental to the nutritional status of Amerindians. Am. J. Trop. Med. Hyg. 76, 534–540 (2007).

    Article  PubMed  Google Scholar 

  107. Lederberg, J. & McCray, A. T. 'Ome sweet 'omics. A genealogical treasury of words. The Scientist 15, 8 (2001).

    Google Scholar 

  108. Peterson, J. The NIH Human Microbiome Project. Genome Res. 9 October 2009 (doi:10.1101/gr.096651.109).

  109. Tibayrenc, M. & Ayala, F. J. The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 19, 405–410 (2002).

    Article  Google Scholar 

  110. Rich, S. M., Sawyer, S. A. & Barbour, A. G. Antigen polymorphism in Borrelia hermsii, a clonal pathogenic bacterium. Proc. Natl Acad. Sci. USA 98, 15038–15043 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarkar, S. F. & Guttman, D. S. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl. Environ. Microbiol. 70, 1992–2012 (2004).

    Article  CAS  Google Scholar 

  112. Kennedy, A. D. et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad. Sci. USA 105, 1327–1332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou, X. et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150, 2565–2573 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Vesper, B. J. et al. The effect of proton pump inhibitors on the human microbiota. Curr. Drug Metab. 10, 84–89 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. Blaser gratefully acknowledges funding from the US National Institutes of Health (NIH; grants RO1GM62370 and UH2AR057506) and from the Diane Belfer Program for Human Microbial Ecology. S. Falkow gratefully acknowledges funding from NIH (grants R01AI026195 and R01AI038459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Blaser.

Related links

Related links

DATABASES

Entrez Genome Project

Homosapiens

Yersinia pestis

Streptococcus pneumoniae

Neisseria meningitidis

Mycobacterium tuberculosis

Salmonella enterica subsp. enterica serovar Typhi

Helicobacter pylori

Staphylococcus aureus

FURTHER INFORMATION

Human Microbiome Project

International Human Microbiome consortium

Martin J. Blaser's homepage

Glossary

Commensal relationship

An intimate, although generally benign, relationship between a resident microorganism and its host. Probably the product of a long evolutionary interplay between the microorganism and the host. The relationship need not be symbiotic.

Gene transfer

The transfer of individual genes or their components, islands of genes, entire organisms, or communities of organisms from parent to offspring (vertical transfer) or between individuals not in a direct lineage (horizontal transfer).

Microbiome

The collective genomes of the microorganisms that reside in an environmental niche.

Nash equilibrium

In game theory, a solution concept in which players in a game are aware of the strategies of the other players but do not deviate from their own, because they do not have anything to gain; it will be disadvantageous to deviate (to 'cheat').

Pan-genome

The set of all of the genes that are found in members of a single species.

Parasite

An organism that diminishes the reproductive fitness of another organism or benefits from another organism without reciprocity.

Pathogen

In medicine, any organism that causes disease. In biological terms, a pathogen is a microorganism that has the inherent capacity to cross anatomical barriers and resist host defences that ordinarily restrict most other microorganisms.

Symbiont

An organism that has a biological relationship with one or more organisms that leads to mutual benefit.

Syntrophic interactions

Interactions in which organisms do more together than alone.

Virulence

A quantitative estimate of the ability of one organism to harm another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaser, M., Falkow, S. What are the consequences of the disappearing human microbiota?. Nat Rev Microbiol 7, 887–894 (2009). https://doi.org/10.1038/nrmicro2245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing