Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural biology of the chaperone–usher pathway of pilus biogenesis

Key Points

  • Chaperone–usher (CU) pili are assembled at the outer membrane by two proteins, a periplasmic chaperone, which provides the scaffold for the correct folding of pilins, and an outer-membrane protein called the usher, which forms a dimeric complex at the outer membrane to recruit and polymerize chaperone–subunit complexes and translocate the growing pilus to the outer surface. CU pili comprise linear, unbranched polymers of several hundreds to thousands of 12–20 kDa pilin subunits. This Review focuses on the rod-like fimbrial organelles, particularly uropathogenic Escherichia coli P and type 1 pili (the Pap and Fim systems, respectively).

  • Over the past decade, a plethora of structural information has been gathered about the various players that participate in P and type 1 pilus biogenesis, and these structural data, including the newly determined usher structures, are reviewed in detail.

  • Pilin subunits contain an incomplete, immunoglobulin-like fold that lacks the carboxy-terminal β-strand, which results in the presence of a large hydrophobic groove. When the chaperone–pilin complex is formed, a structural motif on the G1 strand of the chaperone is inserted into this groove. This donor strand complementation reaction is discussed in light of the most recent structural and biochemical data.

  • Pilin subunits also contain an amino-terminal extension (Nte) peptide that is disordered in the chaperone–subunit complex. During polymerization, the Nte on the incoming pilin subunit replaces the chaperone G1 strand, and this donor strand exchange reaction, including the 'zip-in, zip-out' mechanism, is also reviewed.

  • Recent structural data have indicated that only a single usher pore in the dimeric usher complex is used for pilus secretion. This model is discussed in detail.

  • Bacterial attachment to mucosal surfaces can be the result of the specific recognition of a pilus-associated adhesin by a host cell receptor. The molecular basis of receptor recognition of the FimH and PapG adhesins is described.

  • Finally, the complex role of CU pili in the pathogenesis of urinary tract infections is summarized, along with the prospects for using CU pili as a target for novel antibacterial therapies.

Abstract

The chaperone–usher (CU) pathway of pilus biogenesis is the most widespread of the five pathways that assemble adhesive pili at the surface of Gram-negative bacteria. Recent progress in the study of the structural biology of the CU pathway has unravelled the molecular basis of chaperone function and elucidated the mechanisms of fibre assembly at the outer membrane, leading to a comprehensive description of each step in the biogenesis pathway. Other studies have provided the molecular basis of host recognition by CU pili. The knowledge that has been gathered about both the assembly of and host recognition by CU pili has been harnessed to design promising antibiotic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P and type I pili.
Figure 2: Donor strand complementation and donor strand exchange.
Figure 3: The concerted 'zip-in, zip-out' mechanism for donor strand exchange.
Figure 4: The structural biology of the usher.
Figure 5: Receptor binding and pilus biogenesis inhibition.

Similar content being viewed by others

References

  1. Fronzes, R., Remaut, H. & Waksman, G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27, 2271–2280 (2008).

    Article  CAS  Google Scholar 

  2. Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004).

    Article  CAS  Google Scholar 

  3. Barnhart, M. M. et al. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc. Natl Acad. Sci. USA 97, 7709–7714 (2000).

    Article  CAS  Google Scholar 

  4. Dodson, K. W., Jacob-Dubuisson, F., Striker, R. T. & Hultgren, S. J. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc. Natl Acad. Sci. USA 90, 3670–3674 (1993).

    Article  CAS  Google Scholar 

  5. Thanassi, D. G. et al. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl Acad. Sci. USA 95, 3146–3151 (1998).

    Article  CAS  Google Scholar 

  6. Nuccio, S. P. & Baumler, A. J. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol. Mol. Biol. Rev. 71, 551–575 (2007).

    Article  CAS  Google Scholar 

  7. Kuehn, M. J., Heuser, J., Normark, S. & Hultgren, S. J. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356, 252–255 (1992).

    Article  CAS  Google Scholar 

  8. Baga, M., Norgren, M. & Normark, S. Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49, 241–251 (1987).

    Article  CAS  Google Scholar 

  9. Verger, D., Miller, E., Remaut, H., Waksman, G. & Hultgren, S. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep. 7, 1228–1232 (2006).

    Article  CAS  Google Scholar 

  10. Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002).

    Article  CAS  Google Scholar 

  11. Hultgren, S. J. et al. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl Acad. Sci. USA 86, 4357–4361 (1989).

    Article  CAS  Google Scholar 

  12. Jones, C. H., Danese, P. N., Pinkner, J. S., Silhavy, T. J. & Hultgren, S. J. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J. 16, 6394–6406 (1997).

    Article  CAS  Google Scholar 

  13. Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 329–333 (2004).

    Article  CAS  Google Scholar 

  14. Holmgren, A. & Branden, C. I. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342, 248–251 (1989). This study elucidates the structure of a periplasmic chaperone.

    Article  CAS  Google Scholar 

  15. Kuehn, M. J. et al. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262, 1234–1241 (1993). This paper describes the first structure of a complex between a periplasmic chaperone and a peptide derived from a pilin subunit.

    Article  CAS  Google Scholar 

  16. Slonim, L. N., Pinkner, J. S., Branden, C. I. & Hultgren, S. J. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J. 11, 4747–4756 (1992).

    Article  CAS  Google Scholar 

  17. Choudhury, D. et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066 (1999).

    Article  CAS  Google Scholar 

  18. Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999). This article and reference 17 present the structures of chaperone–subunit complexes and formulate the concepts of donor strand complementation for chaperone function and donor strand exchange for subunit assembly. Reference 17 also provides insights into receptor recognition by the type 1 pilus, as it contains the structure of the FimH lectin domain.

    Article  CAS  Google Scholar 

  19. Bann, J. G., Pinkner, J. S., Frieden, C. & Hultgren, S. J. Catalysis of protein folding by chaperones in pathogenic bacteria. Proc. Natl Acad. Sci. USA 101, 17389–17393 (2004).

    Article  CAS  Google Scholar 

  20. Hung., D. L., Knight, S. D., Woods, R. M., Pinkner, J. S. & Hultgren, S. J. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J. 15, 3792–3805 (1996).

    Article  Google Scholar 

  21. Zavialov, A. V. et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587–596 (2003).

    Article  CAS  Google Scholar 

  22. Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol. Cell 22, 831–842 (2006). This paper presents the first evidence that donor strand exchange occurs through a 'zip-in, zip-out' mechanism that is initiated at the P5 pocket.

    Article  CAS  Google Scholar 

  23. Anderson, K. L. et al. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol. Cell 15, 647–657 (2004).

    Article  CAS  Google Scholar 

  24. Sauer, F. G., Pinkner, J. S., Waksman, G. & Hultgren, S. J. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111, 543–551 (2002). This paper and reference 21 reveal the structures of a ternary complex containing a subunit in donor strand complementation with its cognate chaperone and the same subunit in donor strand exchange with a second subunit. Together with reference 17, these studies validate the concept of donor strand exchange.

    Article  CAS  Google Scholar 

  25. Vetsch, M. et al. Mechanism of fibre assembly through the chaperone-usher pathway. EMBO Rep. 7, 734–738 (2006).

    Article  CAS  Google Scholar 

  26. Lindberg, F., Lund, B., Johansson, L. & Normark, S. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328, 84–87 (1987).

    Article  CAS  Google Scholar 

  27. Jacob-Dubuisson, F., Heuser, J., Dodson, K., Normark, S. & Hultgren, S. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J. 12, 837–847 (1993).

    Article  CAS  Google Scholar 

  28. Striker, R., Jacob-Dubuisson, F., Freiden, C. & Hultgren, S. J. Stable fiber-forming and nonfiber-forming chaperone-subunit complexes in pilus biogenesis. J. Biol. Chem. 269, 12233–12239 (1994).

    CAS  PubMed  Google Scholar 

  29. Lee, Y. M., Dodson, K. W. & Hultgren, S. J. Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli. J. Bacteriol. 189, 5276–5283 (2007).

    Article  CAS  Google Scholar 

  30. Rose, R. J. et al. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Proc. Natl Acad. Sci. USA 105, 12873–12878 (2008).

    Article  CAS  Google Scholar 

  31. Verger, D. et al. Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF. Structure 16, 1724–1731 (2008).

    Article  CAS  Google Scholar 

  32. Saulino, E. T., Thanassi, D. G., Pinkner, J. S. & Hultgren, S. J. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17, 2177–2185 (1998).

    Article  CAS  Google Scholar 

  33. Nishiyama, M. et al. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J. 24, 2075–2086 (2005). This paper describes the first structure of the FimD N-terminal domain bound to a chaperone–subunit complex.

    Article  CAS  Google Scholar 

  34. Nishiyama, M., Ishikawa, T., Rechsteiner, H. & Glockshuber, R. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Science 320, 376–379 (2008). This paper describes the first in vitro reconstitution of pilus biogenesis from purified components.

    Article  CAS  Google Scholar 

  35. Remaut, H. et al. Fibre formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133, 640–652 (2008). This paper describes the structure of the translocation usher pore and proposes a general mechanism of usher function on the basis of the pore structure and a cryo-EM structure of the FimD usher bound to a secretion intermediate.

    Article  CAS  Google Scholar 

  36. Li, H. et al. The outer membrane usher forms a twin-pore secretion complex. J. Mol. Biol. 344, 1397–1407 (2004).

    Article  CAS  Google Scholar 

  37. So, S. S. & Thanassi, D. G. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol. Microbiol. 60, 364–375 (2006).

    Article  CAS  Google Scholar 

  38. Huang, Y., Smith, B. S., Chen, L. X., Baxter, R. H. & Deisenhofer, J. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc. Natl Acad. Sci. USA 106, 7403–7407 (2009).

    Article  CAS  Google Scholar 

  39. Thanassi, D. G., Stathopoulos, C., Dodson, K., Geiger, D. & Hultgren, S. J. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis. J. Bacteriol. 184, 6260–6269 (2002).

    Article  CAS  Google Scholar 

  40. Nishiyama, M., Vetsch, M., Puorger, C., Jelesarov, I. & Glockshuber, R. Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J. Mol. Biol. 330, 513–525 (2003).

    Article  CAS  Google Scholar 

  41. Capitani, G., Eidam, O. & Grutter, M. G. Evidence for a novel domain of bacterial outer membrane ushers. Proteins 65, 816–823 (2006).

    Article  CAS  Google Scholar 

  42. Ng, T. W., Akman, L., Osisami, M. & Thanassi, D. G. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J. Bacteriol. 186, 5321–5331 (2004).

    Article  CAS  Google Scholar 

  43. Eidam, O., Dworkowski, F. S., Glockshuber, R., Grutter, M. G. & Capitani, G. Crystal structure of the ternary FimC-FimFt-FimDN complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD. FEBS Lett. 582, 651–655 (2008).

    Article  CAS  Google Scholar 

  44. Munera, D., Palomino, C. & Fernandez, L. A. Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher. Mol. Microbiol. 69, 911–925 (2008).

    Article  CAS  Google Scholar 

  45. Munera, D., Hultgren, S. & Fernandez, L. A. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol. Microbiol. 64, 333–346 (2007).

    Article  CAS  Google Scholar 

  46. Saulino, E. T., Bullitt, E. & Hultgren, S. J. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc. Natl Acad. Sci. USA 97, 9240–9245 (2000).

    Article  CAS  Google Scholar 

  47. Jacob-Dubuisson, F., Striker, R. & Hultgren, S. J. Chaperone-assisted self-assembly of pili independent of cellular energy. J. Biol. Chem. 269, 12447–12455 (1994).

    CAS  PubMed  Google Scholar 

  48. Zavialov, A. V. et al. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem. J. 389, 685–694 (2005).

    Article  CAS  Google Scholar 

  49. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  50. Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 1079–1093 (2002).

    Article  CAS  Google Scholar 

  51. Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  Google Scholar 

  52. Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA 93, 9630–9635 (1996).

    Article  CAS  Google Scholar 

  53. Hung., C. S. et al. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44, 903–915 (2002).

    Article  CAS  Google Scholar 

  54. Merckel, M. C. et al. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J. Mol. Biol. 331, 897–905 (2003).

    Article  CAS  Google Scholar 

  55. Dodson, K. W. et al. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105, 733–743 (2001).

    Article  CAS  Google Scholar 

  56. Roberts, J. A. et al. The Gal(α1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl Acad. Sci. USA 91, 11889–11893 (1994).

    Article  CAS  Google Scholar 

  57. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4, e329 (2007).

    Article  Google Scholar 

  58. Henderson, J. P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).

    Article  Google Scholar 

  59. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nature Med. 13, 625–630 (2007).

    Article  CAS  Google Scholar 

  60. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  Google Scholar 

  61. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001).

    Article  CAS  Google Scholar 

  62. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  Google Scholar 

  63. Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103, 14170–14175 (2006).

    Article  CAS  Google Scholar 

  64. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  Google Scholar 

  65. Linder, H., Engberg, I., Baltzer, I. M., Jann, K. & Svanborg-Eden, C. Induction of inflammation by Escherichia coli on the mucosal level: requirement for adherence and endotoxin. Infect. Immun. 56, 1309–1313 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hedges, S., Anderson, P., Lidin-Janson, G., de Man, P. & Svanborg, C. Interleukin-6 response to deliberate colonization of the human urinary tract with Gram-negative bacteria. Infect. Immun. 59, 421–427 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mysorekar, I. U., Mulvey, M. A., Hultgren, S. J. & Gordon, J. I. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J. Biol. Chem. 277, 7412–7419 (2002).

    Article  CAS  Google Scholar 

  68. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    Article  CAS  Google Scholar 

  69. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997).

    Article  CAS  Google Scholar 

  70. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    Article  CAS  Google Scholar 

  71. Kihlberg, J., Hultgren, S. J., Normark, S. & Magnusson, G. Probing the combining site of the PapG adhesin of uropathogenic Escherichia coli bacteria by synthetic analogues of galabiose. J. Am. Chem. Soc. 111, 6364–6368 (1989).

    Article  CAS  Google Scholar 

  72. Ohlsson, J., Jass, J., Uhlin, B. E., Kihlberg, J. & Nilsson, U. J. Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3, 772–779 (2002).

    Article  CAS  Google Scholar 

  73. Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17897–17902 (2006).

    Article  CAS  Google Scholar 

  74. Wellens, A. et al. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS ONE 3, e2040 (2008).

    Article  Google Scholar 

  75. Bouckaert, J. et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol. 55, 441–455 (2005).

    Article  CAS  Google Scholar 

  76. Hedenstrom, M. et al. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly. Org. Biomol. Chem. 3, 4193–4200 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Medical Research Council grant 85602 to G.W. and US National Institutes of Health grant 49950 to S.J.H.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

FURTHER INFORMATION

Gabriel Waksman's homepage

Scott J. Hultgren's homepage

Glossary

Chaperone–usher pilus

A bacterial cell surface appendage that is assembled by the chaperone–usher pathway of pilus biogenesis.

Curli

A type of fimbria that mediates binding to components of the extracellular matrix and is often implicated in biofilm formation.

Type IV pilus

An elongated, flexible appendage that extends from the surface of Gram-negative bacterial cells and is used for adhesion and for cell motility (twitching motility).

Type III secretion needle

A needle-like secretion apparatus in Gram-negative bacteria that forms pores in host membranes and allows the injection of virulence factors from the bacterial cytoplasm into the cytosol of host cells.

Type IV secretion pilus

A pilus that is formed as part of the versatile secretion systems that are found in Gram-negative and Gram-positive bacteria. It can secrete a wide range of substrates, including protein–protein and protein–DNA complexes, and can directly target eukaryotic cells.

Molecular dynamics

A form of computer simulation that calculates the time- dependent behaviour of atoms and molecules, providing information about the motion of the atoms and the resultant conformational changes in the molecules over time or during an interaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waksman, G., Hultgren, S. Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol 7, 765–774 (2009). https://doi.org/10.1038/nrmicro2220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2220

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing