Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences

Key Points

  • Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in most invertebrate and vertebrate animals, but not in plants. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms, and four mammalian PGRPs have been identified. All PGRPs have at least one C-terminal PGRP domain, which is homologous to bacteriophage and bacterial type 2 amidases.

  • Insect short PGRPs are present in the haemolymph, cuticle, fat body cells and gut, whereas the long forms are mainly expressed in haemocytes and fat body cells. The expression of insect PGRPs is often upregulated by exposure to bacteria.

  • Insect PGRPs are mainly inducers of proteolytic and signalling cascades. Each PGRP domain has one peptidoglycan-binding groove that is specific for muramyl-pentapeptide and that can discriminate between different types of bacterial peptidoglycan, containing either lysine or diaminopimelic acid. PGRPs generate downstream signals by ligand-induced dimerization or oligomerization.

  • Short insect PGRPs (for example, PGRP-SA) are pattern recognition receptors that recognize lysine-containing peptidoglycan and trigger a proteolytic cascade that generates an activator of the Toll receptor.

  • One long insect PGRP, PGRP-LC, is a transmembrane receptor that recognizes diaminopimelic acid-containing peptidoglycan and activates the IMD signal transduction pathway. Both the Toll and IMD pathways induce the production of antimicrobial peptides.

  • Some insect and mammalian PGRPs are N-acetylmuramoyl-L-alanine amidases that hydrolyse bacterial peptidoglycan and reduce its pro-inflammatory activity.

  • One mammalian PGLYRP, PGLYRP-2, has amidase activity. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulphide-linked homo- and heterodimers. PGLYRP-1 is expressed primarily in PMN granules, and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine. They kill bacteria by interacting with their cell-wall peptidoglycan, rather than permeabilizing their membranes, and synergize with antibacterial peptides.

Abstract

Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules that are present in most invertebrate and vertebrate animals. All PGRPs function in antimicrobial defence and are homologous to the prokaryotic peptidoglycan-lytic type 2 amidases. However, only some PGRPs have the catalytic activity that protects the host from excessive inflammation, and most PGRPs have diversified to carry out other host-defence functions. Insect and mammalian PGRPs defend host cells against infection through very different mechanisms. Insect PGRPs activate signal transduction pathways in host cells or trigger proteolytic cascades in the haemolymph, both of which generate antimicrobial effectors. By contrast, mammalian PGRPs are directly bactericidal. Here, we review these contrasting modes of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGRP structure.
Figure 2: Activation of the Drosophila melanogaster Toll pathway.
Figure 3: Activation of the Drosophila melanogaster IMD pathway by bacteria.
Figure 4: The enzymatic activity of PGRPs.
Figure 5: Downregulation of the immune response by amidase-active PGRPs in Drosophila melanogaster.
Figure 6: The many functions of mammalian peptidoglycan recognition molecules.
Figure 7: Drosophila melanogaster and human PGRP sequences and DAP or Lys specificity.

Similar content being viewed by others

References

  1. Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854–13860 (1996). The first characterization of a PGRP protein.

    Article  CAS  PubMed  Google Scholar 

  2. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998). The first cloning of insect and mammalian PGRPs, showing that PGRPs are conserved throughout evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ochiai, M. & Ashida, M. A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274, 11854–11858 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kiselev, S. L. et al. Molecular cloning and characterization of the mouse tag7 gene encoding a novel cytokine. J. Biol. Chem. 273, 18633–18639 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001). Describes the discovery of a family of PGRPs in mammals.

    Article  CAS  PubMed  Google Scholar 

  7. Christophides, G. K. et al. Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Dziarski, R. & Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7, 232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sang, Y., Ramanathan, B., Ross, C. R. & Blecha, F. Gene silencing and overexpression of porcine peptidoglycan recognition protein long isoforms: involvement in β-defensin-1 expression. Infect. Immun. 73, 7133–7141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tydell, C. C., Yount, N., Tran, D., Yuan, J. & Selsted, M. E. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem. 277, 19658–19664 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Goodson, M. S. et al. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopesVibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71, 6934–6946 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guan, R., Wang, Q., Sundberg, E. J. & Mariuzza, R. A. Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 Å resolution. J. Mol. Biol. 347, 683–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Chang, C. I. et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity. PLoS Biol. 2, e277 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guan, R., Malchiodi, E. L., Wang, Q., Schuck, P. & Mariuzza, R. A. Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Iα. J. Biol. Chem. 279, 31873–31882 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Reiser, J. B., Teyton, L. & Wilson, I. A. Crystal structure of the Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 Å resolution. J. Mol. Biol. 340, 909–917 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, M. S., Byun, M. & Oh, B. H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787–793 (2003). The first crystal structure of a PGRP molecule.

    Article  CAS  Google Scholar 

  17. Guan, R. et al. Crystal structure of human peptidoglycan recognition protein Iα bound to a muramyl pentapeptide from Gram-positive bacteria. Protein Sci. 15, 1199–1206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guan, R. et al. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc. Natl Acad. Sci. USA 101, 17168–17173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Z. M. et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 278, 49044–49052 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001). The first in vivo demonstration of the role of a PRR in the Drosophila immune response. Details the discovery of a PGRP that triggers the activation of a signal transduction pathway and the discovery of the role of PGRPs in resistance to infections.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. et al. Identification of serum N-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognition protein 2. Biochim. Biophys. Acta 1752, 34–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, X. et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 281, 5895–5907 (2006). Describes the discovery of the function of mammalian PGLYRP-3 and PGLYRP-4 as a new class of bactericidal proteins.

    Article  CAS  PubMed  Google Scholar 

  23. De Pauw, P., Neyt, C., Vanderwinkel, E., Wattiez, R. & Falmagne, P. Characterization of human serum N-acetylmuramyl-L-alanine amidase purified by affinity chromatography. Protein Expr. Purif. 6, 371–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Mellroth, P. et al. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl Acad. Sci. USA 102, 6455–6460 (2005). Explains how different PGRP-LC isoforms detect monomeric versus polymeric peptidoglycan. Demonstrates that PGRP-LCa is unable to bind to polymeric peptidoglycan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122–1126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Meister, M. Blood cells of Drosophila: cell lineages and role in host defence. Curr. Opin. Immunol. 16, 10–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Royet, J., Reichhart, J. M. & Hoffmann, J. A. Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bulet, P. & Stocklin, R. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurata, S., Ariki, S. & Kawabata, S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiol. 211, 237–249 (2006).

    Article  CAS  Google Scholar 

  32. Royet, J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327–333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003).

    CAS  PubMed  Google Scholar 

  35. Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunol. 5, 1175–1180 (2004).

    Article  CAS  Google Scholar 

  36. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002). Shows that a PGRP family member functions as a transmembrane receptor upstream of the IMD pathway (also see Refs 36 and 38).

    Article  CAS  PubMed  Google Scholar 

  38. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478–484 (2003). Explains why Lys-type peptidoglycan activates the Toll pathway, whereas DAP-type peptidoglycan mainly induces the IMD pathway.

    Article  CAS  Google Scholar 

  40. Kaneko, T. et al. Monomeric and polymeric Gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637–649 (2004). Demonstrates that different PGRP-LC receptor combinations are required to detect monomeric versus polymeric peptidoglycan.

    Article  CAS  PubMed  Google Scholar 

  41. Stenbak, C. R. et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339–7348 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690–4700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates Imd/Relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705–13710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715–723 (2006). Demonstrates that PGRP-LE functions as an intracellular receptor for bacteria.

    Article  CAS  Google Scholar 

  45. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  46. Park, J. W. et al. A synthetic peptidoglycan fragment as a competitive inhibitor of the melanization cascade. J. Biol. Chem. 281, 7747–7755 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, M. H. et al. Peptidoglycan recognition proteins involved in 1,3-β-D-glucan-dependent prophenoloxidase activation system of insect. J. Biol. Chem. 279, 3218–3227 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Garver, L. S., Wu, J. & Wu, L. P. The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl Acad. Sci. USA 103, 660–665 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006). Demonstrates that a PGRP with catalytic activity is required to control the level of activation of the IMD pathway after infection.

    Article  CAS  PubMed  Google Scholar 

  51. Gelius, E., Persson, C., Karlsson, J. & Steiner, H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306, 988–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–7064 (2003). First demonstration that a Drosophila PGRP molecule can cleave peptidoglycan and decrease its immunostimulatory activity.

    Article  CAS  PubMed  Google Scholar 

  53. Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl-L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994–999 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006). Shows that PGRPs with amidase activity expressed in the gut function as peptidoglycan detoxifying enzymes in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munford, R. S. Detoxifying endotoxin: time, place and person. J. Endotoxin Res. 11, 69–84 (2005).

    CAS  PubMed  Google Scholar 

  56. Wang, H., Gupta, D., Li, X. & Dziarski, R. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infect. Immun. 73, 7216–7225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lo, D. et al. Peptidoglycan recognition protein expression in mouse Peyer's patch follicle associated epithelium suggests functional specialization. Cell. Immunol. 224, 8–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Li, X., Wang, S., Wang, H. & Gupta, D. Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors. J. Biol. Chem. 281, 20738–20748 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Swaminathan, C. P. et al. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc. Natl Acad. Sci. USA 103, 684–689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar, S. et al. Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins Iα and S. J. Biol. Chem. 280, 37005–37012 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Tydell, C. C., Yuan, J., Tran, P. & Selsted, M. E. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J. Immunol. 176, 1154–1162 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, M. et al. Human peptidoglycan recogntion proteins require zinc to kill both Gram-positive and Gram-negative bacteria and are synergistic with antibacterial peptides. J. Immunol. 178, 3116–3125 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Dziarski, R., Platt, K. A., Gelius, E., Steiner, H. & Gupta, D. Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102, 689–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Mathur, P. et al. Murine peptidoglycan recognition proteins PglyrpIa and PglyrpIb are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics 83, 1151–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Uehara, A. et al. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via Toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell. Microbiol. 7, 675–686 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Fraker, P. J. & King, L. E. Reprogramming the immune system during zinc deficiency. Annu. Rev. Nutr. 24, 277–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Walker, C. F. & Black, E. E. Zinc and the risk of infectious disease. Am. J. Clin. Nutr. 68, 447S–463S (2004).

    Google Scholar 

  68. Ibs, K. H. & Rink, L. Zinc-altered immune function. J. Nutr. 133, 1452S–1456S (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Shankar, A. H. & Prasad, A. S. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68, 447S–463S (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Dziarski, R. in Shaechter's Mechanisms of Microbial Disease 4th Edn (eds R. Engelberg, and V. DiRita) 66–89 (Lippincott, Williams & Wilkins 2006).

    Google Scholar 

  71. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  73. Qu, X. D. & Lehrer, R. I. Secretory phospholipase A2 is the principal bactericide for staphylococci and other Gram-positive bacteria in human tears. Infect. Immun. 66, 2791–2797 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Koduri, R. S. et al. Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A2 . J. Biol. Chem. 277, 5849–5857 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Weinrauch, Y., Elsbach, P., Madsen, L. M., Foreman, A. & Weiss, J. The potent anti-Staphylococcus aureus activity of a sterile rabbit inflammatory fluid is due to a 14-kD phospholipase A2 . J. Clin. Invest. 97, 250–257 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Harwig, S. S. et al. Bactericidal properties of murine intestinal phospholipase A2 . J. Clin. Invest. 95, 603–610 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cho, J. H. et al. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106, 2551–2558 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chang, C. I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl Acad. Sci. USA 102, 10279–10284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lim, J. H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, C., Gelius, E., Liu, G., Steiner, H. & Dziarski, R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J. Biol. Chem. 275, 24490–24499 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Garcia, P., Gonzalez, M. P., Garcia, E., Lopez, R. & Garcia, J. L. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol. Microbiol. 31, 1275–1277 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Loeffler, J. M., Nelson, D. & Fischetti, V. A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 2170–2172 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Garcia, P., Martin, A. C. & Lopez, R. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb. Drug Resist. 3, 165–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, C. et al. Peptidoglycan recognition proteins Pglyrp3 and Pglyrp4 are encoded from the epidermal differentiation complex and are candidate genes for the Psors4 locus on chromosome 1q21. Hum. Genet. 119, 113–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Bera, A., Herbert, S., Jakob, A., Vollmer, W. & Gotz, F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55, 778–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Cloud-Hansen, K. A. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nature Rev. Microbiol. 4, 710–716 (2006).

    Article  CAS  Google Scholar 

  88. Vollmer, W. & Holtje, J. V. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 186, 5978–5987 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dmitriev, B. A., Toukach, F. V., Holst, O., Rietschel, E. T. & Ehlers, S. Tertiary structure of Staphylococcus aureus cell wall murein. J. Bacteriol. 186, 7141–7148 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Touhami, A., Jericho, M. H. & Beveridge, T. J. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. 186, 3286–3295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meroueh, S. O. et al. Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl Acad. Sci. USA 103, 4404–4409 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dziarski, R., Ulmer, A. J. & Gupta, D. in Glycomicrobiology (ed. R. J. Doyle) 145–186 (Kluwer Academic/Plenum Publishers, 2000).

    Google Scholar 

  93. Doyle, R. J. & Dziarski, R. in Molecular Medical Microbiology (ed. M. Sussman) 137–154 (Academic Press, 2001).

    Google Scholar 

  94. De Kimpe, S. J., Kengatharan, M., Thiemermann, C. & Vane, J. R. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc. Natl Acad. Sci. USA 92, 10359–10363 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Dziarski, R., Tapping, R. I. & Tobias, P. S. Binding of bacterial peptidoglycan to CD14. J. Biol. Chem. 273, 8680–8690 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Gupta, D., Kirkland, T. N., Viriyakosol, S. & Dziarski, R. CD14 is a cell-activating receptor for bacterial peptidoglycan. J. Biol. Chem. 271, 23310–23316 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  99. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Mitsuzawa, H. et al. Extracellular Toll-like receptor 2 region containing Ser40-Ile64 but not Cys30–Ser39 is critical for the recognition of Staphylococcus aureus peptidoglycan. J. Biol. Chem. 276, 41350–41356 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Iwaki, D. et al. The extracellular Toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J. Biol. Chem. 277, 24315–24320 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5, 1000–1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dziarski, R. & Gupta, D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun. 73, 5212–5216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bubeck Wardenburg, J., Williams, W. A. & Missiakas, D. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc. Natl Acad. Sci. USA 103, 13831–13836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  108. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol. 6, 9–20 (2006).

    Article  CAS  Google Scholar 

  111. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet. 29, 19–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Dziarski, R., Viriyakosol, S., Kirkland, T. N. & Gupta, D. Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: structural requirements differ from those for responses to lipopolysaccharide. Infect. Immun. 68, 5254–5260 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nadesalingam, J., Dodds, A. W., Reid, K. B. & Palaniyar, N. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J. Immunol. 175, 1785–1794 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Ma, Y. G. et al. Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J. Biol. Chem. 279, 25307–25312 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ibrahim, H. R., Matsuzaki, T. & Aoki, T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506, 27–32 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Royet laboratory for comments on the manuscript. Research in the authors' laboratories was supported by the National Institutes of Health (R.D.) and the Ministère de l'Education Nationale de la Recherche et de la Technologie, the Agence National pour la Recherche and the Fondation pour la Recherche Médicale (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julien Royet or Roman Dziarski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Anopheles gambiae

Caenorhabditis elegans

Drosophila melanogaster

Escherichia coli

Helicobacter pylori

Staphylococcus aureus

FURTHER INFORMATION

Julien Royet's homepage

Roman Dziarski's homepage

Glossary

Haemolymph

Circulatory fluid found in insects, which bathes the organs directly.

Prophenoloxidase cascade

Serine-proteinase-based cascade leading to activation of a prophenoloxidase-activating proteinase, which converts inactive prophenoloxidase to active phenoloxidase and results in the generation of quinone and quinone intermediates. Polymerization of quinone intermediates can form melanin.

Type 2 amidase

An enzyme that hydrolyses the lactyl-amide bond between the N-acetylmuramic acid and the first amino acid (L-alanine) of the stem peptide in bacterial peptidoglycan.

Teichoic acid

A phosphate-rich, anionic polysaccharide that is attached to the peptidoglycan of Gram-positive bacteria. Most are polyglycerol phosphate or polyribitol phosphate and, in the case of lipoteichoic acids, have lipid modifications that allow association with the cytoplasmic membrane.

Plasmatocyte

The main cell type found in insect haemolymph.

Type IV secretion system

A syringe-like proteinaceous machinery that can transport bacterial protein or DNA effector molecules directly into a eukaryotic cell.

Opsonin

A substance that binds to microorganisms and other cells and enhances their phagocytosis.

RNA interference

(RNAi). The use of double-stranded RNAs with sequences that precisely match a given gene, to 'knock-down' the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript.

Polymorphonuclear leukocyte

(PMN). White blood cell with multilobed nuclei and cytoplasmic granules, which is involved in inflammatory responses.

M cell

(Microfold cell). Cell type located in the Peyer's patches of the small intestine. Involved in antigen transport and interaction with bacterial pathogens.

Peyer's patches

Specialized lymphoid follicles localized in the submucosa of the small intestine. They contain B-cell follicles and interfollicular T-cell areas, with an outer epithelial layer containing M cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royet, J., Dziarski, R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5, 264–277 (2007). https://doi.org/10.1038/nrmicro1620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing