Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of chronic infection strategies in the α-proteobacteria

Key Points

The α-subdivision of the Proteobacteria is a very large and diverse group of Gram-negative microorganisms. They show great variability in metabolic capacities and inhabit diverse ecological niches. The authors discuss the different mechanisms used by these bacteria to associate with eukaryotic hosts, either as symbionts or as pathogens.

The genomes of the α-proteobacteria vary in both size (from 1 to 9 Mb) and organization (from single circular replicons to multiple replicons, both circular and linear). The genome of the common ancestor of the α-proteobacteria was estimated to contain 3,000–5,000 genes. Two major trends associated with the conversion of this ancestral gene pool into the genomes of the modern species can be recognized: intracellular bacteria associated with invertebrates, animals and humans have evolved by gene loss, whereas the soil-growing, plant-associated bacteria have evolved through genome expansion.

Despite the close phylogenetic relationships between these bacteria, there is no clear 'common mechanism' that allows these bacteria to interact with their eukaryotic hosts. Is this surprising considering the diversity of the hosts? The strategies and mechanisms used by these bacteria to infect the host, avoid host defences and then adapt to the host are described, compared and contrasted.

A recurrent feature of the interaction of α-proteobacteria with their hosts is an effect on host-cell proliferation, creating a new niche in which, or on which, the bacteria can survive. This involves inhibiting cell death and then inducing cell proliferation. Here again, each bacterium uses a different mechanism, ranging from the production of diverse molecules that affect host cell biology, often affecting growth hormones, to 'genetically manipulating' the host cell to induce tumorigenesis.

Abstract

Many of the α-proteobacteria establish long-term, often chronic, interactions with higher eukaryotes. These interactions range from pericellular colonization through facultative intracellular multiplication to obligate intracellular lifestyles. A common feature in this wide range of interactions is modulation of host-cell proliferation, which sometimes leads to the formation of tumour-like structures in which the bacteria can grow. Comparative genome analyses reveal genome reduction by gene loss in the intracellular α-proteobacterial lineages, and genome expansion by gene duplication and horizontal gene transfer in the free-living species. In this review, we discuss α-proteobacterial genome evolution and highlight strategies and mechanisms used by these bacteria to infect and multiply in eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation in genome sizes and lifestyles in the α-proteobacteria.
Figure 2: The road to a chronic infection.
Figure 3: Root hair and nodule infection by rhizobia.
Figure 4: Schematic representation of the invasion and intracellular-survival strategies of selected α-proteobacteria.
Figure 5: Intracellular replication niches.

Similar content being viewed by others

References

  1. La Scola, B., Barassi, L. & Raoult, D. A novel α-proteobacterium, Nordella oligomobilis gen. nov., sp. nov., isolated by using amoebal co-culture. Res. Microbiol. 155, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). Environmental sequencing of water samples from the Sargasso Sea reveals a predominance of α-proteobacterial species.

    Article  CAS  PubMed  Google Scholar 

  3. Andersson, S. G. E. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998). The first publication of an α-proteobacterial genome. One of the first studies to show the presence of pseudogenes and high contents of non-coding DNA in bacterial genomes.

    Article  CAS  PubMed  Google Scholar 

  4. Ogata, S. et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–2098 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel, a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, 327–341 (2004).

    Article  CAS  Google Scholar 

  6. Alsmark, C. M. et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc. Natl Acad. Sci. USA 101, 9716–9721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paulsen, I. T. et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl Acad. Sci. USA 99, 13148–13153 (2002). Describes the Brucella suis genome and highlights similarities between the genomes of animal pathogens and plant symbionts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DelVecchio, V. G. et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl Acad. Sci. USA 99, 443–448 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Nierman, W. C. et al. Complete genome sequence of Caulobacter crescentus. Proc. Natl Acad. Sci. USA 98, 4136–4141 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goodner, B. et al. Pathogen sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323–2328 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wood, D. W. et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317–2322 (2001). References 10 and 11 present the genome sequence of the plant pathogen Agrobacterium tumefaciens.

    Article  CAS  PubMed  Google Scholar 

  12. Galibert, F. et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672 (2001). Presents a genomic analysis of the plant symbiont Sinorhizobium meliloti.

    Article  CAS  PubMed  Google Scholar 

  13. Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kaneko, T. et al. Complete genome sequence of nitrogen-fixing symbiotic bacteria Bradyrhizobium meliloti. DNA Res. 9, 189–197 (2002).

    Article  PubMed  Google Scholar 

  15. Olsen, G. J., Woese, C. R. & Overbeek, R. The winds of evolutionary change, breathing new life into microbiology. J. Bacteriol. 176, 1–6 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boussau, B., Karlberg, O., Frank, C., Legault, B. & Andersson, S. G. E. Computational inference of scenarios for α-proteobacterial genome evolution. Proc. Natl Acad. Sci. USA 101, 9722–9727 (2004). The first quantitative analysis of the flux of genes during the evolution of the α-proteobacterial genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersson, J. O. & Andersson, S. G. E. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16, 1178–1191 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Amiri, H., Davids, W. & Andersson, S. G. E. Birth and death of orphan genes in Rickettsia. Mol. Biol. Evol. 20, 1575–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Michaux-Charachon, S. et al. The Brucella genome at the beginning of the post-genomic era. Vet. Microbiol. 90, 581–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez, J. E. & Marketon, M. M. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67, 574–592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Streit, W. R. et al. An evolutionary hot spot, the pNGR234b replicon of Rhizobium sp. strain NGR234. J. Bacteriol. 186, 535–542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong, K. & Golding, G. B. A phylogenetic analysis of the pSymB replicon from the Sinorhizobium meliloti genome reveals a complex evolutionary history. Can. J. Microbiol. 49, 269–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium legumes. Nature 387, 394–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Barnett, M. J. et al. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl Acad. Sci. USA 98, 9883–9888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uchiumi, T. et al. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol. 186, 2439–2448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sullivan, J. T. & Ronson, C. W. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl Acad. Sci. USA 95, 5145–5149 (1998). A landmark paper in the discovery of symbiotic islands in rhizobia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gottfert, M. et al. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol. 183, 1405–1412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaneko, T. et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, X. et al. Natural genomic design in Sinorhizobium meliloti, novel genomic architectures. Genome Res. 13, 1810–1817 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Karlberg, E. O. & Andersson, S. G. E. Mitochondrial history and mRNA localization: is there a correlation? Nature Rev. Genet. 4, 391–397 (2004).

    Article  CAS  Google Scholar 

  31. Goormachtig, S., Capoen, W., James, E. K. & Holsters, M. Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc. Natl Acad. Sci. USA 101, 6303–6308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gage, D. J. Infection and invasion of roots by symbiotic, nitrogen-fixing Rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68, 280–300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smit, G., Swart, S., Lugtenberg, B. J. & Kijne, J. W. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol. 6, 2897–2903 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Timmers, A. C., Auriac, M. C. & Truchet, G. Refined analysis of early symbiotic steps of the RhizobiumMedicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126, 3617–3628 (1999).

    CAS  PubMed  Google Scholar 

  35. Robertson, J. G., Lyttleton, P., Bullivant, S. & Grayston, G. F. Membranes in lupin root nodules. I. The role of Golgi bodies in the biogenesis of infection threads and peribacteroid membranes. J. Cell. Sci. 30, 129–149 (1978).

    CAS  PubMed  Google Scholar 

  36. Oke, V. & Long, S. R. Bacteroid formation in the Rhizobium–legume symbiosis. Curr. Opin. Microbiol. 2, 641–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Ardourel, M. et al. Rhizobium meliloti lipooligosaccharide nodulation factors, different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6, 1357–1374 (1994). Provides some of the earliest evidence that Nod factors are key to infection, together with the prediction of distinct Nod factor receptors for nodule organogenesis and bacterial entry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walker, S. A. & Downie, J. A. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol. Plant Microbe Interact. 13, 54–62 (2000).

    Article  Google Scholar 

  39. Limpens, E. et al. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Madsen, E. B. et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Radutoiu, S. et al. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592 (2003). References 39–41 describe the long-awaited identification of nod factor receptors.

    Article  CAS  PubMed  Google Scholar 

  42. Cullimore, J. & Denarie, J. How legumes select their sweet talking symbionts. Science 302, 575–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Parniske, M. & Downie, J. A. Locks, keys and symbioses. Nature 425, 569–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Fraysse, N., Couderc, F. & Poinsot, V. Surface polysaccharide involvement in establishing the Rhizobium–legume symbiosis. Eur. J. Biochem. 270, 1365–1380 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Pellock, B. J., Cheng, H. P. & Walker, G. C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol. 182, 4310–4318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dehio, C. Bartonella interactions with endothelial cells and erythrocytes. Trends Microbiol. 9, 279–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Dehio, C. Recent progress in understanding Bartonella-induced vascular proliferation. Curr. Opin. Microbiol. 6, 61–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Schulein, R. et al. Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med. 193, 1077–1086 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitchell, S. J. & Minnick, M. F. Characterization of a two-gene locus from Bartonella bacilliformis associated with the ability to invade human erythrocytes. Infect. Immun. 63, 1552–1562 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dehio, C., Meyer, M., Berger, J., Schwarz, H. & Lanz, C. Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J. Cell Sci. 110, 2141–2154 (1997). Description of the 'invasome', a novel mechanism used by Bartonella to enter endothelial cells.

    CAS  PubMed  Google Scholar 

  51. Verma, A., Davis, G. E. & Ihler, G. M. Infection of human endothelial cells with Bartonella bacilliformis is dependent on Rho and results in activation of Rho. Infect. Immun. 68, 5960–5969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Verma, A., Davis, G. E. & Ihler, G. M. Formation of stress fibres in human endothelial cells infected with Bartonella bacilliformis is associated with altered morphology, impaired migration and defects in cell morphogenesis. Cell. Microbiol. 3, 169–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Verma, A. & Ihler, G. M. Activation of Rac, Cdc42 and other downstream signalling molecules by Bartonella bacilliformis during entry into human endothelial cells. Cell. Microbiol. 4, 557–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Merz, A. J. & So, M. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 16, 423–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Schmid, M. C. et al. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol. Microbiol. 52, 81–92 (2004). Describes the multiple roles of the Bartonella VirB T4SS in the interaction with endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  56. Kusumawati, A. et al. Early events and implication of F-actin and annexin I associated structures in the phagocytic uptake of Brucella suis by the J-774A.1 murine cell line and human monocytes. Microb. Pathog. 28, 343–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, S., Watarai, M., Makino, S. & Shirahata, T. Membrane sorting during swimming internalization of Brucella is required for phagosome trafficking decisions. Microb. Pathog. 33, 225–237 (2002).

    Article  PubMed  Google Scholar 

  58. Naroeni, A. & Porte, F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 70, 1640–1644 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watarai, M., Makino, S., Fujii, Y., Okamoto, K. & Shirahata, T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell. Microbiol. 4, 341–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Porte, F., Naroeni, A., Ouahrani-Bettache, S. & Liautard, J. P. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome–lysosome fusion in murine macrophages. Infect. Immun. 71, 1481–1490 (2003). First description of the role of lipid rafts in the entry of Brucella into macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watarai, M. et al. Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. Infect. Immun. 70, 4818–4825 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manes, S., del Real, G. & Martinez, A. C. Pathogens, raft hijackers. Nature Rev. Immunol. 3, 557–568 (2003).

    Article  CAS  Google Scholar 

  63. Castaneda-Roldan, E. I. et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell. Microbiol. 6, 435–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Watarai, M. et al. Cellular prion protein promotes Brucella infection into macrophages. J. Exp. Med. 198, 5–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Celli, J. & Gorvel, J. P. Organelle robbery, Brucella interactions with the endoplasmic reticulum. Curr. Opin. Microbiol. 7, 93–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Caron, E. et al. Live Brucella spp. fail to induce tumor necrosis factor-α excretion upon infection of U937-derived phagocytes. Infect. Immun. 62, 5267–5274 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Caron, E., Gross, A., Liautard, J. P. & Dornand, J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-α expression, active on human macrophage-like cells. J. Immunol. 156, 2885–2893 (1996).

    CAS  PubMed  Google Scholar 

  68. Jubier-Maurin, V. et al. Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor-α production during infection of human macrophages. Infect. Immun. 69, 4823–4830 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sola-Landa, A. et al. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29, 125–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Guzman-Verri, C. et al. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc. Natl Acad. Sci. USA 99, 12375–12380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hackstadt, T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 1, 93–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles, a matter of life and death. Nature Cell Biol. 1, 183–188 (1999).

    Article  Google Scholar 

  73. Caron, E., Liautard, J. P. & Kohler, S. Differentiated U937 cells exhibit increased bactericidal activity upon LPS activation and discriminate between virulent and avirulent Listeria and Brucella species. J. Leukoc. Biol. 56, 174–181 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Porte, F., Liautard, J. P. & Kohler, S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect. Immun. 67, 4041–4047 (1999). Shows how phagosome acidification is essential for Brucella to survive in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Boschiroli, M. L. et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl Acad. Sci. USA 99, 1544–1549 (2002). The B. suis VirB T4SS is one of the virulence factors induced by phagosome acidification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Naroeni, A., Jouy, N., Ouahrani-Bettache, S., Liautard, J. P. & Porte, F. Brucella suis-impaired specific recognition of phagosomes by lysosomes due to phagosomal membrane modifications. Infect. Immun. 69, 486–493 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arenas, G. N., Staskevich, A. S., Aballay, A. & Mayorga, L. S. Intracellular trafficking of Brucella abortus in J774 macrophages. Infect. Immun. 68, 4255–4263 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Celli, J. et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198, 545–556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L. & Gorvel, J. P. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66, 2387–2392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pizarro-Cerda, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711–5724 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chaves-Olarte, E. et al. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol. 4, 663–676 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Samartino, L. E. & Enright, F. M. Pathogenesis of abortion of bovine brucellosis. Comp. Immunol. Microbiol. Infect. Dis. 16, 95–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Cheon, C. I., Lee, N. G., Siddique, A. B., Bal, A. K. & Verma, D. P. Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J. 12, 4125–4135 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bartsev, A. V. et al. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134, 871–879 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112, 1697–1708 (1999).

    CAS  PubMed  Google Scholar 

  86. Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Weinrauch, Y. & Zychlinsky, A. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53, 155–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. DeLeo, F. R. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9, 399–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Clifton, D. R. et al. NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc. Natl Acad. Sci. USA 95, 4646–4651 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Joshi, S. G., Francis, C. W., Silverman, D. J. & Sahni, S. K. Nuclear factor κB protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect. Immun. 71, 4127–4136 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gross, A., Terraza, A., Ouahrani-Bettache, S., Liautard, J. P. & Dornand, J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect. Immun. 68, 342–351 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kirby, J. E. & Nekorchuk, D. M. Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc. Natl Acad. Sci. USA 99, 4656–4661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liberto, M. C. et al. In vitro Bartonella quintana infection modulates the programmed cell death and inflammatory reaction of endothelial cells. Diagn. Microbiol. Infect. Dis. 45, 107–115 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. Zhu, J. et al. The bases of crown gall tumorigenesis. J. Bacteriol. 182, 3885–3895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Binns, A. N. & Castantino, P. in The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria. (eds Spaink, H. P., Kondorosi, A. & Hooykaas, P. J. J.) 251–266 (Kluwer, The Netherlands, 1998).

    Google Scholar 

  96. Endre, G. et al. A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Levy, J. et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Ane, J. M. et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364–1367 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Conley, T., Slater, L. & Hamilton, K. Rochalimaea species stimulate human endothelial cell proliferation and migration in vitro. J. Lab. Clin. Med. 124, 521–528 (1994). References 98 and 99 describe the cloning of one of the legume genes that are required for both rhizobial and AM fungi infection. The possible evolution of rhizobial association from more ancient mycorrhizal associations is suggested.

    CAS  PubMed  Google Scholar 

  100. Kempf, V. A. et al. Interaction of Bartonella henselae with endothelial cells results in rapid bacterial rRNA synthesis and replication. Cell. Microbiol. 2, 431–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Kempf, V. A. et al. Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell. Microbiol. 3, 623–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Kempf, V. A., Hitziger, N., Riess, T. & Autenrieth, I. B. Do plant and human pathogens have a common pathogenicity strategy? Trends Microbiol. 10, 269–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Martin, G., Juchault, P. & Legrand, J. J. Mise en évidence d'un microorganisme intracytoplasmique symbiote de l'Oniscoïde Armadillidium vulgare Latr dont la présence accompagne l'intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. C. R. Acad. Sci. Paris (série D) 276, 2313–2316 (1973) (in French).

    Google Scholar 

  104. Martin, G. et al. The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur. J. Biochem. 262, 727–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Ohashi, N., Zhi, N., Lin, Q. & Rikihisa, Y. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70, 2128–2138 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Felek, S., Huang, H. & Rikihisa, Y. Sequence and expression analysis of virB9 of the type IV secretion system of Ehrlichia canis strains in ticks, dogs, and cultured cells. Infect. Immun. 71, 6063–6067 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  Google Scholar 

  109. Llosa, M. & O'Callaghan, D. Euroconference on the biology of type IV secretion processes: bacterial gates into the outer world. Mol. Microbiol. 53, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Vergunst, A. C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979–982 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Vergunst, A. C., van Lier, M. C., den Dulk-Ras, A. & Hooykaas, P. J. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol. 133, 978–988 (2003). Use of the Cre recombinase as a reporter to demonstrate translocation of the Agrobacterium virulence proteins VirF and VirE2 through the VirB T4SS in the absence of T-DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schrammeijer, B., den Dulk-Ras, A., Vergunst, A. C., Jurado Jacome, E. & Hooykaas, P. J. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model, evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31, 860–868 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schrammeijer, B. et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11, 258–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. O'Callaghan, D. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33, 1210–1220 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Seira, R., Comerci, D. J., Sanchez, D. O. & Ugalde, R. A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol. 182, 4849–4855 (2000).

    Article  Google Scholar 

  116. Comerci, D. J., Martinez-Lorenzo, M. J., Sieira, R., Gorvel, J. P. & Ugalde, R. A. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell. Microbiol. 3, 159–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Delrue, R. M. et al. Identification of Brucella spp. genes involved in intracellular trafficking. Cell. Microbiol. 3, 487–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Boschiroli, M. L. et al. Type IV secretion and Brucella virulence. Vet. Microbiol. 90, 341–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Schulein, R. & Dehio, C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46, 1053–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Seubert, A., Hiestand, R., de la Cruz, F. & Dehio, C. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol. 49, 1253–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Dehio, C. Molecular and cellular basis of Bartonella pathogenesis Annu. Rev. Microbiol. 58, 365–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. & Ronson, C. W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 54, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Tzfira, T., Vaidya, M. & Citovsky, V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M. B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, L., Chen, Y., Wood, D. W. & Nester, E. W. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J. Bacteriol. 184, 4838–4845 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lopez-Goni, I. et al. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet. Microbiol. 329–339 (2002).

  127. Li, L. et al. A global pH sensor, Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc. Natl Acad. Sci. USA 99, 12369–12374 (2002). References 70 and 127 decribe how a conserved two-component regulatory system regulates the expression of virulence factors involved in the interaction with mammalian and plant hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bhat, U. R., Carlson, R. W., Busch, M. & Mayer, H. Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the α-2 subgroup of Proteobacteria. Int. J. Syst. Bacteriol. 41, 213–217 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Vedam, V., Haynes, J. G., Kannenberg, E. L., Carlson, R. W. & Sherrier, D. J. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Mol. Plant Microbe Interact. 17, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. LeVier, K., Phillips, R. W., Grippe, V. K., Roop, R. M. & Walker, G. C. Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science. 287, 2492–2493 (2000). Shows that BacA is essential for both Brucella and Sinorhizobium maintenance in their host cells. Some of the clearest evidence for common symbiotic and pathogenic determinants.

    Article  CAS  PubMed  Google Scholar 

  131. Ferguson, G. P. et al. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl Acad. Sci. USA. 101, 5012–5017 (2004). Shows that the BacA protein is required for the incorperation of VLCFAs into the lipid A of Brucella and Sinorhizobium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takeda, K. & Akira, S. Toll receptors and pathogen resistance. Cell. Microbiol. 5, 143–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Matera, G. et al. Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis, a study on the human whole blood and a rat model. Int. Immunopharmacol. 3, 853–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Zahringer, U. et al. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J. Biol. Chem. 279, 21046–21054 (2004).

    Article  PubMed  CAS  Google Scholar 

  135. Campos, M. A. et al. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect. Immun. 72, 176–186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kannenberg, E. L. & Carlson, R. W. Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol. 39, 379–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Fernandez-Prada, C. M. et al. Interactions between Brucella melitensis and human phagocytes, bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110–2119 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jarvis, B. W., Harris, T. H., Qureshi, N. & Splitter, G. A. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infect. Immun. 70, 7165–7168 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jimenez de Bagues, M. P., Terraza, A., Gross, A. & Dornand, J. Different responses of macrophages to smooth and rough Brucella spp., relationship to virulence. Infect. Immun. 72, 2429–2433 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Breedveld, M. W. & Miller, K. J. Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58, 145–161 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Dylan, T. et al. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 83, 4403–4407 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Briones, G. et al. Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect. Immun. 69, 4528–4535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Roset, M. S., Ciocchini, A. E., Ugalde, R. A. & Inon de Iannino, N. Molecular cloning and characterization of cgt, the Brucella abortus cyclic β-1,2-glucan transporter gene, and its role in virulence. Infect. Immun. 72, 2263–2271 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mah, T. F. et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Deng, W. et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc. Natl Acad. Sci. USA 95, 7040–7045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gage, D. J. & Margolin, W. Hanging by a thread: invasion of legume plants by rhizobia. Curr. Opin. Microbiol. 3, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Oldroyd, G. E. & Downie, J. A. Calcium, kinases and nodulation signalling in legumes. Nature Rev. Mol. Cell Biol. 5, 566–576 (2004).

    Article  CAS  Google Scholar 

  148. Bako, L., Umeda, M., Tiburcio, A. F., Schell, J. & Koncz, C. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc. Natl Acad. Sci. USA 100, 10108–10113 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Duckely, M. & Hohn, B. The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol. Lett. 223, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Tzfira, T. & Citovsky, V. The Agrobacterium–plant cell interaction. Taking biology lessons from a bug. Plant Physiol. 133, 943–947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Citovsky, V. et al. Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J. Biol. Chem. 279, 29528–29533 (2004)

    Article  CAS  PubMed  Google Scholar 

  152. Ausmees, N. et al. Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J. Bacteriol. 186, 4774–4780 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. V. Cullimore and C. Boivin (LIPM) and A. Vergunst (Leiden University) for helpful discussions; D. Gage (University of Connecticut), T. Timmers (LIPM), P. Cossart (Institut Pasteur), D. Bouchon (CNRS UMR6556) and C. Dehio (Biozentrum Basel) for providing images; and C. Felix and G. Martin (CNRS UMR6556), A. Huber and C. Ronson (University of Otago) for sharing unpublished data. We regret that space limitations have not allowed us to cite all the work published in the field. Work in the authors' laboratories is supported by INRA, CNRS and the Toulouse genopole (to J.B.), the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation and the 5th EU-framework program 'Quality of Life' (to S.G.E.A.), and INSERM, the 5th EU-framework program, Vaincre la Mucoviscidose, Universite de Montpellier 1 (BQR), La Region Languedoc Roussilon and La ville de Nimes (to D.O'C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O'Callaghan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Agrobacterium rhizogenes

Agrobacterium tumefaciens

Anaplasma (Ehrlichia) phagocytophilia

Bartonella henselae

Bartonella quintana

Bordetella pertussis

Bradyrhizobium japonicum

Brucella melitensis

Brucella suis

Caulobacter crescentus

Ehrlichia chaffensis

Escherichia coli

Mesorhizobium loti

Mycobacterium tuberculosis

Neisseria meningitidis

Pseudomonas aeruginosa

Rhizobium sp. NGR234

Rhizobium leguminosarum

Rickettsia conorii

Rickettsia prowazekii

Sinorhizobium meliloti

Treponema pallidum

Xanthomonas campestris

FURTHER INFORMATION

Jacques Batut's laboratory

Siv G. E. Andersson's laboratory

Glossary

CHEMOORGANOTROPHY

The derivation of energy by metabolizing organic molecules.

PHOTOTROPHY

A process that involves the gaining of energy from light.

CHEMOLITHOTROPHY

The use of CO, CO2 or carbonates as the sole source of carbon for cell biosynthesis, and the derivation of energy from the oxidation of reduced inorganic or organic compounds.

PERICELLULAR

Bound to the cell surface.

NODULE PRIMORDIUM

A cluster of undifferentiated and actively dividing cells in the root cortex that is formed in response to Nod factors from which the nodule meristem will form.

NOD FACTORS

Substituted lipo-chitooligosaccharides synthesized by rhizobia in response to flavenoids and related compounds in plant exudates. They induce changes in plant cell biology that are required for infection and nodulation.

PHRAGMOSOME

A cytoplasmic structure anchoring the nucleus and the mitotic apparatus to the future division plane in pre-mitotic plant cells.

BACTEROID

Symbiotic form of rhizobia that have left the infection thread. Fully differentiated bacteroids are non-dividing and nitrogen-fixing. Bacteroids are separated from the plant cell cytoplasm by a peribacteroid membrane and a peribacteroid space.

TYPE IV PILI

Found on many bacteria, these mediate bacterial adhesion, biofilm formation and horizontal gene transfer. They are dynamic polymers that elongate and retract resulting in 'twitching motility'.

PLACENTAL TROPHOBLASTS

A specialized cell type covering the mammalian blastocyte.

ZIPPER MECHANISM

Bacterial pathogens invade mammalian cells with two distinct phenotypes. The 'zipper' phenotype, as seen with invasin-mediated entry of Yersinia or internalin-mediated entry of Listeria, is morphologically characterized by 'zippering' of a closely apposed host membrane around the bacterial surface. This is in contrast to the 'trigger' phenotype, which is seen with the entry of Salmonella and Shigella, whereby large membrane projections or ruffles are formed.

LIPID RAFTS

Localized regions with high cholesterol and glycosphingolipid content within cell membranes. These microdomains are focal points for proteins and have roles in a wide range of biological processes. Many bacteria, viruses and parasites use lipid rafts to enter mammalian cells. Vesicles that are derived from raft domains seem to traffic independently of other pathways and do not fuse with endosomes and lysosomes. This allows the pathogens to remain in a safe, non-hostile environment.

CRAFT ASSAY

(Cre Reporter Assay for Translocation). Allows the detection of translocation of bacterial virulence factors directly into host or recipient cells as translational fusions to the Cre site-specific recombinase. The Cre fusions mediate recombination at specifically designed lox-target sites in the recipient cell genome, activating the expression of a reporter gene allowing visualization or stable selection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batut, J., Andersson, S. & O'Callaghan, D. The evolution of chronic infection strategies in the α-proteobacteria. Nat Rev Microbiol 2, 933–945 (2004). https://doi.org/10.1038/nrmicro1044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing