Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transmission cycles, host range, evolution and emergence of arboviral disease

Key Points

  • Many recent viral pandemics have been attributed to the ability of some RNA viruses, for example HIV, dengue virus and possibly the severe acute respiratory syndrome (SARS) coronavirus, to change their host range to include humans. The authors discuss the mechanisms of host-range alteration used by a selection of viruses, including Venezuelan equine and Japanese encephalitis viruses (VEEV and JEV, respectively), dengue virus and West Nile virus (WNV).

  • Venezuelan equine encephalitis (VEE) was first recognized as a disease of horses, donkeys and mules in northern South America during the mid 1930s, but there has been renewed interest in this virus because of its potential as a biological weapon. Molecular analysis of epidemic strains — which exploit horses for amplification — and comparison with strains that do not cause epidemic disease, have shown that a few amino-acid mutations can affect host-range alteration. Changes on the surface of the VEE virion seem to be important for these host range changes.

  • JEV causes epidemics of encephalitis in India, Korea, China, South-East Asia and Indonesia. The disease affects children, and is associated with a mortality rate of greater than 20%. However, unlike VEEV, there is no evidence that JEV undergoes mutation and selection to replicate in different hosts. Pigs amplify transmission in peridomestic settings, and migratory birds have a role in dispersion of JEV. Although different genotypes have been isolated, their relevance to pathology and host range is unclear.

  • WNV is now endemic in the United States after first emerging in New York in 1999. WNV has a very broad host range. Forty-nine species of mosquitoes and ticks, and 225 species of birds are susceptible to infection. Other hosts include horses, cattle, llamas, alligators, cats, dogs, wolves and sheep. Transmission of WNV among these species has not been reported. Although humans are probably dead-end hosts, infection with WNV can cause severe disease.

  • Dengue viruses are very important human arboviral pathogens and use humans as reservoir hosts. Aedes aegypti and Aedes albopictus mosquitoes are the most common vectors in urban settings. It is thought that the human epidemic form of dengue virus evolved in the last 2000 years, and genetic analysis indicates that mutations have resulted in adaptation to the urban mosquito host. However, links between mutations and human pathogenicity have not been established.

  • Finally, the authors discuss how host-range changes can be studied experimentally. Cell-culture model systems can be used to find mutations that correlate with virus fitness and adaptation in different host strains. Viruses that replicate in useful laboratory animal models can also be studied in whole animal hosts.

Abstract

Many pandemics have been attributed to the ability of some RNA viruses to change their host range to include humans. Here, we review the mechanisms of disease emergence that are related to the host-range specificity of selected mosquito-borne alphaviruses and flaviviruses. We discuss viruses of medical importance, including Venezuelan equine and Japanese encephalitis viruses, dengue viruses and West Nile viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of Venezuelan equine encephalitis virus outbreaks in the Americas.
Figure 2: Venezuelan equine encephalitis emergence — a phylogenetic tree.
Figure 3: Phylogenetic trees of Japanese encephalitis virus.
Figure 4: Evolutionary history of dengue virus emergence.

Similar content being viewed by others

References

  1. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436—441 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science 288, 1789—1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, E. et al. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 74, 3227—3234 (2000). This paper demonstrates the convergent evolution of endemic DENV virus strains from three of the four serotpes of sylvatic progenitors, and places a time frame on urban dengue emergence that is congruent with historical and epidemiological predictions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gubler, D. J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33, 330—342 (2002).

    Article  PubMed  Google Scholar 

  5. Marra, M. A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399—1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276—278 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rota, P. A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394—1399 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenbloom, M., Leikin, J. B., Vogel, S. N. & Chaudry, Z. A. Biological and chemical agents: a brief synopsis. Am. J. Ther. 9, 5—14 (2002).

    Article  PubMed  Google Scholar 

  9. Kubes, V. & Rios, F. A. The causative agent of infectious equine encephalomyelitis in Venezuela. Science 90, 20—21 (1939).

    Article  CAS  PubMed  Google Scholar 

  10. Beck, C. E. & Wyckoff, R. W. G. Venezuelan equine encephalomyelitis. Science 88, 530 (1938).

    Article  CAS  PubMed  Google Scholar 

  11. Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. Venezuelan equine encephalitis. Annu. Rev. Entomol. 49, 141—174 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Walton, T. E. & Grayson, M. A. in The Arboviruses: Epidemiology and Ecology Vol. IV (ed. Monath, T. P.) 203—231 (CRC, Boca Raton, Florida, 1988).

    Google Scholar 

  13. Walton, T. E., Alvarez, O., Buckwalter, R. M. & Johnson, K. M. Experimental infection of horses with enzootic and epizootic strains of Venezuelan equine encephalomyelitis virus. J. Infect. Dis. 128, 271—282 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, E. et al. Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. Am. J. Trop. Med. Hyg. 65, 64—69 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rico-Hesse, R., Weaver, S. C., de Siger, J., Medina, G. & Salas, R. A. Emergence of a new epidemic/epizootic Venezuelan equine encephalitis virus in South America. Proc. Natl Acad. Sci. USA 92, 5278—5281 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Weaver, S. C. et al. Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group. Lancet 348, 436—440 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Oberste, M. S. et al. Association of Venezuelan equine encephalitis virus subtype IE with two equine epizootics in Mexico. Am. J. Trop. Med. Hyg. 59, 100—107 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Zarate, M. L., Scherer, W. F. & Dickerman, R. W. El virus de la encephalitis equina de Venezuela como determinante de infecciones en humanos, descripción de un caso fatal ocurrido en Jaltipán Veracruz en 1965. Rev. Invest. Salud Publica 30, 296—302 (1965).

    Google Scholar 

  19. Johnson, K. M. & Martin, D. H. Venezuelan equine encephalitis. Adv. Vet. Sci. Comp. Med. 18, 79—116 (1974).

    CAS  PubMed  Google Scholar 

  20. Young, N. A. & Johnson, K. M. Antigenic variants of Venezuelan equine encephalitis virus: their geographic distribution and epidemiologic significance. Am. J. Epidemiol. 89, 286—307 (1969). This landmark paper established the antigenic relationships of enzootic and epizootic strains of VEEVs and provided the framework for future genetic studies that identified the origins of outbreaks.

    Article  CAS  PubMed  Google Scholar 

  21. Rico-Hesse, R., Roehrig, J. T., Trent, D. W. & Dickerman, R. W. Genetic variation of Venezuelan equine encephalitis virus strains of the ID variety in Colombia. Am. J. Trop. Med. Hyg. 38, 195—204 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Kinney, R. M., Tsuchiya, K. R., Sneider, J. M. & Trent, D. W. Genetic evidence that epizootic Venezuelan equine encephalitis (VEE) viruses may have evolved from enzootic VEE subtype I-D virus. Virology 191, 569—580 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Weaver, S. C., Bellew, L. A. & Rico-Hesse, R. Phylogenetic analysis of alphaviruses in the Venezuelan equine encephalitis complex and identification of the source of epizootic viruses. Virology 191, 282—290 (1992). This paper provides the first phylogenetic evidence that epizootic strains of VEEV have evolved repeatedly from enzootic subtype ID progenitors, and correctly predicts the occurrence of additional outbreaks after a 19-year absence.

    Article  CAS  PubMed  Google Scholar 

  24. Brault, A. C. et al. Potential sources of the 1995 Venezuelan equine encephalitis subtype IC epidemic. J. Virol. 75, 5823—5832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, E. et al. Genetic and phenotypic changes accompanying the emergence of epizootic subtype IC Venezuelan equine encephalitis viruses from an enzootic subtype ID progenitor. J. Virol. 73, 4266—4271 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson, B. J., Brubaker, J. R., Roehrig, J. T. & Trent, D. W. Variants of Venezuelan equine encephalitis virus that resist neutralization define a domain of the E2 glycoprotein. Virology 177, 676—683 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Brault, A. C., Powers, A. M., Holmes, E. C., Woelk, C. H. & Weaver, S. C. Positively charged amino acid substitutions in the E2 envelope glycoprotein are associated with the emergence of Venezuelan equine encephalitis virus. J. Virol. 76, 1718—1730 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holland, J. & Domingo, E. Origin and evolution of viruses. Virus Genes 16, 13—21 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Oberste, M. S., Schmura, S. M., Weaver, S. C. & Smith, J. F. Geographic distribution of Venezuelan equine encephalitis virus subtype IE genotypes in Central America and Mexico. Am. J. Trop. Med. Hyg. 60, 630—634 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Salazar, D., Estrada-Franco, J. G., Carrara, A. S., Aronson, J. F. & Weaver, S. C. Equine amplification and virulence of subtype IE Venezuelan equine encephalitis viruses isolated during the 1993 and 1996 Mexican epizootics. Emerg. Infect. Dis. 9, 161—168 (2003).

    PubMed  Google Scholar 

  31. Brault, A. C. et al. Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc. Natl Acad. Sci. USA 101, 11344—11349 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ferro, C. et al. Natural enzootic vectors of Venezuelan equine encephalitis virus, Magdalena Valley, Colombia. Emerg. Infect. Dis. 9, 49—54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Linthicum, K. J. et al. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, 397—400 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kramer, L. D. & Scherer, W. F. Vector competence of mosquitoes as a marker to distinguish Central American and Mexican epizootic from enzootic strains of Venezuelan encephalitis virus. Am. J. Trop. Med. Hyg. 25, 336—346 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Brault, A. C., Powers, A. M. & Weaver, S. C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 76, 6387—6392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bowen, G. S. & Calisher, C. H. Virological and serological studies of Venezuelan equine encephalomyelitis in humans. J. Clin. Microbiol. 4, 22—27 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weaver, S. C. in The Encyclopedia of Arthropod-transmitted Infections (ed. Service, M. W.) 151—159 (CAB International, Wallingford, UK, 2001).

    Google Scholar 

  38. Reisen, W. K. in The Encyclopedia of Arthropod-transmitted Infections (ed. Service, M. W.) 558—563 (CAB International, Wallingford, UK, 2001).

    Google Scholar 

  39. Hahn, C. S., Lustig, S., Strauss, E. G. & Strauss, J. H. Western equine encephalitis virus is a recombinant virus. Proc. Natl Acad. Sci. USA 85, 5997—6001 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Hiroyama, T. Epidemiology of Japanese encephalitis (in Japanese). Saishin-Igaku 17, 1272—1280 (1962).

    Google Scholar 

  41. Mitamura, T., Kitaoka, M., Mori, K. & Okuba, K. Isolation of Japanese epidemic encephalitis from mosquitoes caught in nature. Tokyo Iji Shinshi 62, 820—831 (1938).

    Google Scholar 

  42. Scherer, W. F. Ecological studies of Japanese encephalitis in Japan, parts I—IX. Am. J. Trop. Med. Hyg. 8, 644—722 (1959). This paper is one of a series of ten papers that describes the ecology, epidemiology and transmission cycles of JEV.

    Article  CAS  PubMed  Google Scholar 

  43. Tan, R., Nalim, S., Suwasono, H. & Jennings, G. B. Japanese encephalitis virus isolated from seven species of mosquitoes collected at Semarang Regency, Central Java. Bul. Penelit. Kesehatan 21, 1—5 (1993).

    Google Scholar 

  44. Chen, W. R., Tesh, R. B. & Rico-Hesse, R. Genetic variation of Japanese encephalitis virus in nature. J. Gen. Virol. 71, 2915—2922 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, W. R., Rico-Hesse, R. & Tesh, R. B. A new genotype of Japanese encephalitis virus from Indonesia. Am. J. Trop. Med. Hyg. 47, 61—69 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi, Y., Hasegawa, H. & Yamauchi, T. Studies on the antigenic structure of Japanese encephalitis virus using monoclonal antibodies. Microbiol. Immunol. 29, 1069—1082 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Sumiyoshi, H. et al. Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161, 497—510 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Gould, E. A., de Lamballerie, X., Zanotto, P. M. & Holmes, E. C. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 59, 277—314 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Solomon, T. et al. Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 77, 3091—3098 (2003). This paper proposes that JEV originated in the Indonesia and Malaysia regions and has since spread to other parts of Asia and Australasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hancock, J. & Kushlan, J. The Herons Handbook (Harper and Row, New York, 1984).

    Google Scholar 

  51. Hasegawa, H., Yoshida, M., Fujita, S. & Kobayashi, Y. Comparison of structural proteins among antigenically different Japanese encephalitis virus strains. Vaccine 12, 841—844 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Scherer, W. F., Buescher, E. L. & McClure, H. E. Ecologic studies of Japanese encephalitis virus in Japan. V. Avian factors. Am. J. Trop. Med. Hyg. 8, 689—697 (1959).

    Article  CAS  PubMed  Google Scholar 

  53. Work, T. H., Hurlbut, H. S. & Taylor, R. M. Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. Am. J. Trop. Med. Hyg. 4, 872—888 (1955).

    Article  CAS  PubMed  Google Scholar 

  54. Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333—2337 (1999). This paper describes the emergence of WNV in the United States.

    Article  CAS  PubMed  Google Scholar 

  55. O'Leary, D. R. et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 4, 61—70 (2004).

    Article  PubMed  Google Scholar 

  56. Davis, C. T. et al. Genetic variation among geographically distinct West Nile virus isolates collected in the United States during 2002. Emerg. Infect. Dis. 9, 1423—1429 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Estrada-Franco, J. G. et al. West Nile virus in Mexico: evidence of widespread circulation since July 2002. Emerg. Infect. Dis. 9, 1604—1607 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Finney, S. Hopelessly lost, the homing pigeon whose cross-channel hop took him to New York. Daily Mail (Lond.) (23 June 2003).

  59. Marra, P. P., Griffing, S. M. & McLean, R. G. West Nile virus and wildlife health. Emerg. Infect. Dis. 9, 898—899 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McLean, R. G. West Nile Virus: emerging threat to public health and animal health. J. Vet. Med. Educ. 30, 143—144 (2003).

    Article  PubMed  Google Scholar 

  61. Malkinson, M. & Banet, C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 267, 309—322 (2002).

    CAS  PubMed  Google Scholar 

  62. Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr. Top. Microbiol. Immunol. 267, 195—221 (2002).

    CAS  PubMed  Google Scholar 

  63. Intrauterine West Nile virus infection — New York, 2002. MMWR Morb. Mortal Wkly. Rep. 51, 1135—1136 (2002).

  64. Detection, of West Nile virus in blood donations — United States, 2003. MMWR Morb. Mortal Wkly Rep. 52, 769—772 (2003).

  65. Petersen, L. R., Roehrig, J. T. & Hughes, J. M. West Nile virus encephalitis. N. Engl. J. Med. 347, 1225—1226 (2002).

    Article  PubMed  Google Scholar 

  66. Pealer, L. N. et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med. 349, 1236—1245 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Iwamoto, M. et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N. Engl. J. Med. 348, 2196—203 (2003).

    Article  PubMed  Google Scholar 

  68. Petersen, L. R., Marfin, A. A. & Gubler, D. J. West Nile virus. JAMA 290, 524—528 (2003).

    Article  PubMed  Google Scholar 

  69. Harrington, T. et al. West Nile virus infection transmitted by blood transfusion. Transfusion 43, 1018—1022 (2003).

    Article  PubMed  Google Scholar 

  70. Gause, G. F. The Struggle for Existence (Dover Publications, New York, 1971).

    Google Scholar 

  71. WHO. Dengue and dengue haemorrhagic fever. [online], <http://www.who.int/mediacentre/factsheets/fs117> (April, 2002).

  72. Diallo, M. et al. Amplification of the sylvatic cycle of dengue virus type 2, Senegal, 1999—2000: entomologic findings and epidemiologic considerations. Emerg. Infect. Dis. 9, 362—367 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rudnick, A. Studies of the ecology of dengue in Malaysia: a preliminary report. J. Med. Entomol. 2, 203—208 (1965).

    Article  CAS  PubMed  Google Scholar 

  74. Rudnick, A. in Proceedings of the International Conference on Dengue/DHF (eds Pang, T. & Pathmanathan, R.) 7 (University of Malaysia Press, Kuala Lumpur, 1984).

    Google Scholar 

  75. Gubler, D. J. in Dengue and Dengue Hemorrhagic Fever (eds Gubler, D. J. & Kuno, G.) 1—22 (CAB International, New York, 1997).

    Google Scholar 

  76. Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174, 479—493 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Holmes, E. C. & Twiddy, S. S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 3, 19—28 (2003).

    Article  PubMed  Google Scholar 

  78. Harrington, L. C., Edman, J. D. & Scott, T. W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 38, 411—422 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Weaver, S. C., Coffey, L. L., Nussenzveig, R., Ortiz, D. & Smith, D. in Microbe—Vector Interactions in Vector-borne Diseases (eds Gillespie, S. H., Smith, G. L. & Osbourn, A.) 139—180 (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  80. Tabachnick, W. J. & Powell, J. R. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet. Res. 34, 215—229 (1979).

    Article  CAS  PubMed  Google Scholar 

  81. Black, W. C. et al. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res. 33, 379—88 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Moncayo, A. C. et al. Emergence of epidemic dengue through the adaptation of sylvatic progenitor viruses to anthropophilic mosquito vectors. Emerg. Infect. Dis. (in the press).

  83. Guirakhoo, F. et al. Viremia and immunogenicity in nonhuman primates of a tetravalent yellow fever—dengue chimeric vaccine: genetic reconstructions, dose adjustment, and antibody responses against wild-type dengue virus isolates. Virology 298, 146—159 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Weaver, S. C., Rico-Hesse, R. & Scott, T. W. Genetic diversity and slow rates of evolution in New World alphaviruses. Curr. Top. Microbiol. Immunol. 176, 99—117 (1992).

    CAS  PubMed  Google Scholar 

  85. Weaver, S. C., Brault, A. C., Kang, W. & Holland, J. J. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J. Virol. 73, 4316—4326 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cooper, L. A. & Scott, T. W. Differential evolution of eastern equine encephalitis virus populations in response to host cell type. Genetics 157, 1403—1412 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Novella, I. S., Hershey, C. L., Escarmis, C., Domingo, E. & Holland, J. J. Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J. Mol. Biol. 287, 459—465 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Brault, A. C. Genetic Analysis of Epizootic Venezuelan Equine Encephalitis Virus Emergence Mechanisms. Thesis, Univ. Texas Medical Branch, (2001).

    Google Scholar 

  89. Byrnes, A. P. & Griffin, D. E. Binding of Sindbis virus to cell surface heparan sulfate. J. Virol. 72, 7349—7356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Klimstra, W. B., Ryman, K. D. & Johnston, R. E. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 72, 7357—7366 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Weaver, S. C. et al. Genetic determinants of Venezuelan equine encephalitis emergence. Arch. Virol. Suppl. 18, 43—64 (2004).

    Google Scholar 

  92. Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 49, 141—174 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.C.W. is suppported by the National Institutes of Health. A.D.T.B. is supported by the State of Texas Higher Education Coordinating Board and the Centers for Diseases Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

DENV

JEV

VEEV

WNV

Infectious Disease Database

arboviral infections

dengue haemorrhagic fever

Japanese encephalitis

WNV infection

FURTHER INFORMATION

Disease watch Focus: Dengue

Glossary

EPIZOOTIC

Higher than average amplification, or occurrence, of a disease or pathogen in non-human animals.

STRAINS

Individual isolates or variants of a virus.

VIRAEMIA

Presence of virus in the bloodstream — usually essential for transmission of arboviruses by arthropod vectors.

SYLVATIC

Occurring in forest habitats.

ENZOOTIC

A disease or maintenance transmission cycle occurring continuously among non-human animals in a particular region or locality.

SUBTYPE

A distinct virus variant that can be antigenically distinguished from other closely related variants.

SYMPATRIC

Having overlapping geographical distributions.

ZOONOTIC

Pathogens or diseases that normally circulate among non-human animals but that can be transmitted to humans.

OLD WORLD

Those parts of the world known to Europeans before the voyages of Christopher Columbus — Europe, Asia and Africa. The New World refers to the American continents.

PERIDOMESTIC

In, and around, human habitations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, S., Barrett, A. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2, 789–801 (2004). https://doi.org/10.1038/nrmicro1006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1006

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing