Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building strong bones: molecular regulation of the osteoblast lineage

Key Points

  • Bones have important endocrine and paracrine roles beyond their structural function.

  • Bone mass and integrity is determined by the opposing activities of osteoblasts (which make bone) and osteoclasts (which resorb bone).

  • Osteoblasts are derived progressively from mesenchymal progenitors and preosteoblasts, and can further become bone-lining cells and osteocytes. These cells are collectively called osteoblast lineage cells.

  • Differentiation of osteoblasts from mesenchymal progenitors requires the activities of stage-specific transcription factors.

  • Osteoblast differentiation is regulated by a range of developmental signals, which control specific stages of the progression along the osteoblast lineage.

  • Bone homeostasis is controlled by a range of hormones.

Abstract

The past 15 years have witnessed tremendous progress in the molecular understanding of osteoblasts, the main bone-forming cells in the vertebrate skeleton. In particular, all of the major developmental signals (including WNT and Notch signalling), along with an increasing number of transcription factors (such as RUNX2 and osterix), have been shown to regulate the differentiation and/or function of osteoblasts. As evidence indicates that osteoblasts may also regulate the behaviour of other cell types, a clear understanding of the molecular identity and regulation of osteoblasts is important beyond the field of bone biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osteoclast and osteoblast lineage cells.
Figure 2: The different stages of osteoblast lineage cell differentiation.
Figure 3: Developmental signals regulating key steps of osteoblast differentiation.

Similar content being viewed by others

References

  1. Razzaque, M. S. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nature Rev. Endocrinol. 5, 611–619 (2009).

    CAS  Google Scholar 

  2. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  3. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    CAS  PubMed  Google Scholar 

  4. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  5. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  6. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall, B. K. in Bone and Cartilage: Developmental Skeletal Biology 13–30 (Elsevier Academic Press, 2005).

    Google Scholar 

  10. Dudley, H. R. & Spiro, D. The fine structure of bone cells. J. Biophys. Biochem. Cytol. 11, 627–649 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pritchard, J. J. A cytological and histochemical study of bone and cartilage formation in the rat. J. Anat. 86, 259–277 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Owen, M. Cell population kinetics of an osteogenic tissue. I. J. Cell Biol. 19, 19–32 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Owen, M. & Macpherson, S. Cell population kinetics of an osteogenic tissue. II. J. Cell Biol. 19, 33–44 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    CAS  PubMed  Google Scholar 

  15. van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bellido, T. et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146, 4577–4583 (2005).

    CAS  PubMed  Google Scholar 

  17. Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    CAS  PubMed  Google Scholar 

  18. Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).

    CAS  PubMed  Google Scholar 

  19. Powell, W. F. Jr. et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J. Endocrinol. 209, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krause, C. et al. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem. 285, 41614–41626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    CAS  PubMed  Google Scholar 

  22. Semenov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).

    CAS  PubMed  Google Scholar 

  23. Olsen, B. R., Reginato, A. M. & Wang, W. Bone development. Annu. Rev. Cell Dev. Biol. 16, 191–220 (2000).

    CAS  PubMed  Google Scholar 

  24. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    CAS  PubMed  Google Scholar 

  25. Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).

    CAS  PubMed  Google Scholar 

  27. Friedenstein, A. J. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol. Blood Transfus. 25, 19–29 (1980).

    CAS  PubMed  Google Scholar 

  28. Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).

    CAS  PubMed  Google Scholar 

  29. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    CAS  PubMed  Google Scholar 

  30. Kuznetsov, S. A. et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347 (1997).

    CAS  PubMed  Google Scholar 

  31. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    CAS  PubMed  Google Scholar 

  32. Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nombela-Arrieta, C., Ritz, J. & Silberstein, L. E. The elusive nature and function of mesenchymal stem cells. Nature Rev. Mol. Cell Biol. 12, 126–131 (2011).

    CAS  Google Scholar 

  36. Pignolo, R. J. & Kassem, M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J. Bone Miner. Res. 26, 1685–1693 (2011).

    CAS  PubMed  Google Scholar 

  37. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nature Genet. 22, 85–89 (1999).

    CAS  PubMed  Google Scholar 

  38. Bi, W. et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl Acad. Sci. USA 98, 6698–6703 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kist, R., Schrewe, H., Balling, R. & Scherer, G. Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis 32, 121–123 (2002).

    CAS  PubMed  Google Scholar 

  40. Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813–2828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA 102, 14665–14670 (2005).

    CAS  PubMed  Google Scholar 

  42. Mori-Akiyama, Y., Akiyama, H., Rowitch, D. H. & de Crombrugghe, B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl Acad. Sci. USA 100, 9360–9365 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    CAS  PubMed  Google Scholar 

  44. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    CAS  PubMed  Google Scholar 

  45. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779 (1997).

    CAS  PubMed  Google Scholar 

  46. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet. 16, 307–310 (1997).

    CAS  PubMed  Google Scholar 

  47. Choi, J. Y. et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl Acad. Sci. USA 98, 8650–8655 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13, 1025–1036 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    CAS  PubMed  Google Scholar 

  51. Cui, C. B., Cooper, L. F., Yang, X., Karsenty, G. & Aukhil, I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell. Biol. 23, 1004–1013 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dobreva, G. et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125, 971–986 (2006).

    CAS  PubMed  Google Scholar 

  53. Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genet. 24, 391–395 (2000).

    CAS  PubMed  Google Scholar 

  54. Tribioli, C. & Lufkin, T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126, 5699–5711 (1999).

    CAS  PubMed  Google Scholar 

  55. Thomas, D. M. et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell 8, 303–316 (2001).

    CAS  PubMed  Google Scholar 

  56. Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Shimoyama, A. et al. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol. Biol. Cell 18, 2411–2418 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, M. H. et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem. 280, 35579–35587 (2005).

    CAS  PubMed  Google Scholar 

  59. Robledo, R. F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089–1101 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bialek, P. et al. A twist code determines the onset of osteoblast differentiation. Dev. Cell 6, 423–435 (2004).

    CAS  PubMed  Google Scholar 

  61. Funato, N. et al. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Development 136, 615–625 (2009).

    CAS  PubMed  Google Scholar 

  62. Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17, 1979–1991 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006).

    CAS  PubMed  Google Scholar 

  64. Hesse, E. et al. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J. Cell Biol. 191, 1271–1283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanzler, B., Kuschert, S. J., Liu, Y. H. & Mallo, M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125, 2587–2597 (1998).

    CAS  PubMed  Google Scholar 

  66. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    CAS  PubMed  Google Scholar 

  67. Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nature Med. 14, 306–314 (2008).

    CAS  PubMed  Google Scholar 

  68. Ohba, S. et al. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev. Cell 14, 689–699 (2008).

    CAS  PubMed  Google Scholar 

  69. Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566 (2004).

    CAS  PubMed  Google Scholar 

  70. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    CAS  PubMed  Google Scholar 

  71. Zhou, X. et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc. Natl Acad. Sci. USA 107, 12919–12924 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol. 172, 115–125 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nature Med. 11, 880–885 (2005).

    CAS  PubMed  Google Scholar 

  74. Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell 10, 771–782 (2006).

    CAS  PubMed  Google Scholar 

  75. Yu, V. W. et al. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice. J. Cell Biol. 169, 591–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  77. Elefteriou, F. et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 4, 441–451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    CAS  PubMed  Google Scholar 

  79. Ambrogini, E. et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 11, 136–146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rached, M. T. et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, W. et al. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development 136, 4143–4153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Eferl, R. et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 23, 2789–2799 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med. 6, 980–984 (2000).

    CAS  PubMed  Google Scholar 

  84. Kveiborg, M. et al. ΔFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol. Cell. Biol. 24, 2820–2830 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sabatakos, G. et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Med. 6, 985–990 (2000).

    CAS  PubMed  Google Scholar 

  86. Kenner, L. et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J. Cell Biol. 164, 613–623 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    CAS  PubMed  Google Scholar 

  88. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 (1997).

    CAS  PubMed  Google Scholar 

  89. Bai, C. B., Auerbach, W., Lee, J. S., Stephen, D. & Joyner, A. L. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753–4761 (2002).

    CAS  PubMed  Google Scholar 

  90. St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, F. et al. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131, 1309–1318 (2004).

    CAS  PubMed  Google Scholar 

  92. Tu, X., Joeng, K. S. & Long, F. Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation. Dev. Biol. 1 Dec 2011 (doi:10.1016/j.ydbio.2011.11.013).

    CAS  PubMed  Google Scholar 

  93. Joeng, K. S. & Long, F. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 136, 4177–4185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hilton, M. J., Tu, X., Cook, J., Hu, H. & Long, F. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development 132, 4339–4351 (2005).

    CAS  PubMed  Google Scholar 

  95. Maeda, Y. et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc. Natl Acad. Sci. USA 104, 6382–6387 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008).

    CAS  PubMed  Google Scholar 

  97. Mak, K. K. et al. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev. Cell 14, 674–688 (2008).

    CAS  PubMed  Google Scholar 

  98. Kopan, R. & Goate, A. A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev. 14, 2799–2806 (2000).

    CAS  PubMed  Google Scholar 

  99. Donoviel, D. B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Herreman, A. et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl Acad. Sci. USA 96, 11872–11877 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    CAS  PubMed  Google Scholar 

  102. Honjo, T. The shortest path from the surface to the nucleus: RBP-Jκ/Su(H) transcription factor. Genes Cells 1, 1–9 (1996).

    CAS  PubMed  Google Scholar 

  103. Mohamed, S. A. et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun. 345, 1460–1465 (2006).

    CAS  PubMed  Google Scholar 

  104. Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nature Genet. 43, 303–305 (2011).

    CAS  PubMed  Google Scholar 

  105. Isidor, B. et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nature Genet. 43, 306–308 (2011).

    CAS  PubMed  Google Scholar 

  106. Salie, R. et al. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 46, 680–694 (2010).

    CAS  PubMed  Google Scholar 

  107. Zanotti, S. et al. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149, 3890–3899 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nature Med. 14, 299–305 (2008).

    CAS  PubMed  Google Scholar 

  109. Tao, J. et al. Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J. Bone Miner. Res. 25, 2175–2183 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Engin, F. et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum. Mol. Genet. 18, 1464–1470 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    CAS  PubMed  Google Scholar 

  112. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    CAS  PubMed  Google Scholar 

  113. Wu, X. et al. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133, 340–353 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    CAS  PubMed  Google Scholar 

  115. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    CAS  PubMed  Google Scholar 

  116. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    CAS  PubMed  Google Scholar 

  117. Ai, M., Holmen, S. L., Van Hul, W., Williams, B. O. & Warman, M. L. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol. Cell. Biol. 25, 4946–4955 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Semenov, M. V. & He, X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J. Biol. Chem. 281, 38276–38284 (2006).

    CAS  PubMed  Google Scholar 

  119. Ellies, D. L. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21, 1738–1749 (2006).

    CAS  PubMed  Google Scholar 

  120. Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).

    CAS  PubMed  Google Scholar 

  121. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Staehling-Hampton, K. et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am. J. Med. Genet. 110, 144–152 (2002).

    PubMed  Google Scholar 

  124. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bennett, C. N. et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl Acad. Sci. USA 102, 3324–3329 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Holmen, S. L. et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res. 19, 2033–2040 (2004).

    CAS  PubMed  Google Scholar 

  127. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nature Med. 17, 684–691 (2011).

    CAS  PubMed  Google Scholar 

  128. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Glass, D. A., 2nd. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    CAS  PubMed  Google Scholar 

  130. Holmen, S. L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    CAS  PubMed  Google Scholar 

  131. Yadav, V. K., Arantes, H. P., Barros, E. R., Lazaretti-Castro, M. & Ducy, P. Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif. Tissue Int. 86, 382–388 (2010).

    CAS  PubMed  Google Scholar 

  132. Frost, M. et al. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high-bone-mass phenotype due to a mutation in Lrp5. J. Bone Miner. Res. 26, 1721–1728 (2011).

    CAS  PubMed  Google Scholar 

  133. Yadav, V. K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nature Med. 16, 308–312 (2010).

    CAS  PubMed  Google Scholar 

  134. Inose, H. et al. Efficacy of serotonin inhibition in mouse models of bone loss. J. Bone Miner. Res. 26, 2002–2011 (2011).

    CAS  PubMed  Google Scholar 

  135. Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005).

    CAS  PubMed  Google Scholar 

  136. Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    CAS  PubMed  Google Scholar 

  137. Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    CAS  PubMed  Google Scholar 

  138. Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    CAS  PubMed  Google Scholar 

  139. Joeng, K. S., Schumacher, C. A., Zylstra-Diegel, C. R., Long, F. & Williams, B. O. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev. Biol. 359, 222–229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Mak, K. K., Chen, M. H., Day, T. F., Chuang, P. T. & Yang, Y. Wnt/β-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133, 3695–3707 (2006).

    CAS  PubMed  Google Scholar 

  141. Tu, X. et al. Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev. Cell 12, 113–127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nature Cell Biol. 9, 1273–1285 (2007).

    CAS  PubMed  Google Scholar 

  143. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    CAS  PubMed  Google Scholar 

  144. Albers, J. et al. Control of bone formation by the serpentine receptor Frizzled-9. J. Cell Biol. 192, 1057–1072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    CAS  PubMed  Google Scholar 

  146. Bandyopadhyay, A. et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2, e216 (2006).

    PubMed  PubMed Central  Google Scholar 

  147. Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genet. 38, 1424–1429 (2006).

    CAS  PubMed  Google Scholar 

  148. Kamiya, N. et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135, 3801–3811 (2008).

    CAS  PubMed  Google Scholar 

  149. Kamiya, N. et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J. Bone Miner. Res. 23, 2007–2017 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kamiya, N. et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J. Bone Miner. Res. 25, 200–210 (2010).

    CAS  PubMed  Google Scholar 

  151. Mishina, Y. et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J. Biol. Chem. 279, 27560–27566 (2004).

    CAS  PubMed  Google Scholar 

  152. Devlin, R. D. et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 144, 1972–1978 (2003).

    CAS  PubMed  Google Scholar 

  153. Tan, X. et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. J. Cell Sci. 120, 2162–2170 (2007).

    CAS  PubMed  Google Scholar 

  154. Daluiski, A. et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nature Genet. 27, 84–88 (2001).

    CAS  PubMed  Google Scholar 

  155. Kokabu, S. et al. BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol. Endocrinol. 10 Nov 2011 (doi:10.1210/me.2011-1168).

    CAS  PubMed  Google Scholar 

  156. Itoh, N. & Ornitz, D. M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn. 237, 18–27 (2008).

    CAS  PubMed  Google Scholar 

  157. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    CAS  PubMed  Google Scholar 

  158. Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16, 1446–1465 (2002).

    CAS  PubMed  Google Scholar 

  159. Montero, A. et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Invest. 105, 1085–1093 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, Z., Lavine, K. J., Hung., I. H. & Ornitz, D. M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev. Biol. 302, 80–91 (2007).

    CAS  PubMed  Google Scholar 

  161. Ohbayashi, N. et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev. 16, 870–879 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jacob, A. L., Smith, C., Partanen, J. & Ornitz, D. M. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev. Biol. 296, 315–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu, K. et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130, 3063–3074 (2003).

    CAS  PubMed  Google Scholar 

  164. Eswarakumar, V. P. et al. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129, 3783–3793 (2002).

    CAS  PubMed  Google Scholar 

  165. Eswarakumar, V. P., Horowitz, M. C., Locklin, R., Morriss-Kay, G. M. & Lonai, P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc. Natl Acad. Sci. USA 101, 12555–12560 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Valverde-Franco, G. et al. Defective bone mineralization and osteopenia in young adult FGFR3−/− mice. Hum. Mol. Genet. 13, 271–284 (2004).

    CAS  PubMed  Google Scholar 

  167. Liu, F., Malaval, L. & Aubin, J. E. The mature osteoblast phenotype is characterized by extensive plasticity. Exp. Cell Res. 232, 97–105 (1997).

    CAS  PubMed  Google Scholar 

  168. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    CAS  PubMed  Google Scholar 

  169. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    CAS  PubMed  Google Scholar 

  170. Yadav, V. K. et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Williams, G. A. et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J. Bone Miner. Res. 26, 1698–1709 (2011).

    CAS  PubMed  Google Scholar 

  172. Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140, 1630–1638 (1999).

    CAS  PubMed  Google Scholar 

  173. Cornish, J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175, 405–415 (2002).

    CAS  PubMed  Google Scholar 

  174. Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl Acad. Sci. USA 105, 20529–20533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nissenson, R. A. & Juppner, H. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. Rosen, C. J.) (Wiley, 2008).

    Google Scholar 

  176. Tam, C. S., Heersche, J. N., Murray, T. M. & Parsons, J. A. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 110, 506–512 (1982).

    CAS  PubMed  Google Scholar 

  177. Yakar, S. et al. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J. Endocrinol. 189, 289–299 (2006).

    CAS  PubMed  Google Scholar 

  178. Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 11, 161–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  180. Wu, X. et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7, 571–580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Med. 15, 757–765 (2009).

    CAS  PubMed  Google Scholar 

  182. Giustina, A., Mazziotti, G. & Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. DiGirolamo, D. J. et al. Mode of growth hormone action in osteoblasts. J. Biol. Chem. 282, 31666–31674 (2007).

    CAS  PubMed  Google Scholar 

  184. Zhang, M. et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem. 277, 44005–44012 (2002).

    CAS  PubMed  Google Scholar 

  185. Zhao, G. et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141, 2674–2682 (2000).

    CAS  PubMed  Google Scholar 

  186. Kawano, H. et al. Suppressive function of androgen receptor in bone resorption. Proc. Natl Acad. Sci. USA 100, 9416–9421 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Venken, K. et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J. Bone Miner. Res. 21, 576–585 (2006).

    CAS  PubMed  Google Scholar 

  188. Sims, N. A. et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J. Clin. Invest. 111, 1319–1327 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Vidal, O. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl Acad. Sci. USA 97, 5474–5479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Syed, F. A., Fraser, D. G., Monroe, D. G. & Khosla, S. Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor α on bone. Bone 49, 208–216 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by US National Institutes of Health grants AR055923, DK065789 and AR060456. The author apologizes for the omission of many references owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Fanxin Long's homepage

Glossary

Cortical bone

The compact hard tissue that forms the outer shell of a bone and surrounds the marrow cavity.

Periosteum

The layered fibrous membrane covering the surface of bone tissue. It contains osteoblast progenitors.

Axial skeleton

Bones that form the central axis of the body, including the bones of the skull, the vertebrae, the ribs and the sternum.

Appendicular skeleton

The bones of the limbs, the shoulders and the hip girdles.

Somites

Mesodermal structures found on either side of the neural tube in vertebrate embryos that eventually give rise to muscle, skin and vertebrae.

Clavicle

The collar bone, connecting the scapula and the sternum.

Primordium

An organ or tissue at its earliest stages of development; also known as the anlage.

Fontanelles

Membrane-covered spaces (soft spots) between adjacent bones in a newborn's skull.

Cleidocranial dysplasia

A human autosomal-dominant disorder with persistently open skull sutures and bulging calvaria, hypoplasia or aplasia of the clavicles. The disorder is caused by loss-of-functions mutations in RUNX2.

Perichondrium

The layered fibrous membrane covering the surface of cartilage. Cells residing within the perichondrium, including osteoblast progenitors, are termed perichondrial cells.

Trabecular bone

Compared with cortical bone, the porous and less dense bone tissue found at the ends of long bones and within the interior of vertebrae.

Hadju–Cheney syndrome

A rare autosomal-dominant inherited disorder characterized by craniofacial abnormalities and generalized osteoporosis. Caused by truncating mutations in exon 34 of NOTCH2.

Osteopenia

A condition in which bone mineral density is lower than normal but not low enough to be considered osteoporosis.

Osteoporosis-pseudoglioma syndrome

A human autosomal-recessive disorder that is characterized by severe juvenile-onset osteoporosis and congenital or juvenile-onset blindness. Caused by loss-of-function mutations in low-density lipoprotein receptor-related protein 5 (LRP5).

Sclerosteosis

A rare autosomal-recessive disorder that is characterized by generalized bone thickening (mostly pronounced in the skull and the mandible), tall stature and hand malformations. Caused by loss-of-function mutations in SOST.

Van Buchem disease

A rare autosomal-recessive disorder that is characterized by generalized bone thickening, similar to sclerosteosis but without the tall stature or hand malformations. Caused by a deletion downstream of SOST.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13, 27–38 (2012). https://doi.org/10.1038/nrm3254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing