Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of DNA replication termination

Key Points

  • Termination of DNA replication occurs when two replication forks meet on the same stretch of DNA, during which the following events occur, although not necessarily in this order: forks converge until all intervening DNA is unwound; any remaining gaps are filled and ligated; catenanes are removed; and replication proteins are unloaded.

  • In eukaryotes, most termination sites are determined stochastically by the location of replication initiation sites. In bacteria, termination generally occurs at a specific locus.

  • Replication termination can be a problematic process. Termination of simian virus 40 (SV40) replication involves the stalling of converging forks, and bacterial termination is prone to inducing re-replication. By contrast, fork stalling or re-replication have not been observed during unperturbed termination in eukaryotes.

  • Topological stress accumulates between converging forks and is relieved by the generation of pre-catenanes, which are removed by type II topoisomerases. During bacterial and SV40 termination, type II topoisomerases are required for fork convergence, but in eukaryotes they are dispensable for this purpose.

  • After forks converge, any remaining catenanes are removed by a type II topoisomerase. In eukaryotes, gaps are readily filled by the extension of the leading strands, but in bacteria and SV40 this process is less well-defined.

  • In eukaryotes, a dedicated replisome removal pathway has recently been identified, which operates late during termination, after the DNA is fully replicated. It is unclear whether any comparable pathway exists in bacteria.

Abstract

Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in DNA replication.
Figure 2: Replication termination in Escherichia coli.
Figure 3: Model for simian virus 40 DNA replication termination.
Figure 4: Model of eukaryotic replication termination.

Similar content being viewed by others

References

  1. Siddiqui, K., On, K. F. & Diffley, J. F. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Skarstad, K. & Katayama, T. Regulating DNA replication in bacteria. Cold Spring Harb. Perspect. Biol. 5, a012922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balakrishnan, L. & Bambara, R. A. Okazaki fragment metabolism. Cold Spring Harb. Perspect. Biol. 5, a010173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa, A., Hood, I. V. & Berger, J. M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 82, 25–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berezney, R., Dubey, D. D. & Huberman, J. A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108, 471–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Zechiedrich, E. L. & Osheroff, N. Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Champoux, J. J. & Been, M. D. in Mechanistic Studies of DNA Replication and Genetic Recombination: ICN-UCLA Symposia on Molecular and Cellular Biology (ed. Alberts, B.) 809–815 (New York Academic Press, 1980).

    Book  Google Scholar 

  8. Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D. & Cozzarelli, N. R. Topological challenges to DNA replication: conformations at the fork. Proc. Natl Acad. Sci. USA 98, 8219–8226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ullsperger, C., Vologodskii, A. & Cozzarelli, N. R. Unlinking of DNA by topoisomerases during DNA replication. Nucleic Acids Mol. Biol. 9, 115–142 (1995).

    Article  CAS  Google Scholar 

  10. Vafabakhsh, R. & Ha, T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dimude, J. U., Midgley-Smith, S. L., Stein, M. & Rudolph, C. J. Replication termination: containing fork fusion-mediated pathologies in Escherichia coli. Genes (Basel) 7, 40 (2016).

    Article  CAS  Google Scholar 

  12. Duggin, I. G. & Bell, S. D. Termination structures in the Escherichia coli chromosome replication fork trap. J. Mol. Biol. 387, 532–539 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Ivanova, D. et al. Shaping the landscape of the Escherichia coli chromosome: replication–transcription encounters in cells with an ectopic replication origin. Nucleic Acids Res. 43, 7865–7877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rudolph, C. J., Upton, A. L., Stockum, A., Nieduszynski, C. A. & Lloyd, R. G. Avoiding chromosome pathology when replication forks collide. Nature 500, 608–611 (2013). Provides strong evidence that defective termination in bacteria can lead to the formation of flap structures that stimulate the re-initiation of replication.

    Article  CAS  PubMed  Google Scholar 

  15. Duggin, I. G., Wake, R. G., Bell, S. D. & Hill, T. M. The replication fork trap and termination of chromosome replication. Mol. Microbiol. 70, 1323–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Levine, C., Hiasa, H. & Marians, K. J. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400, 29–43 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Espeli, O., Levine, C., Hassing, H. & Marians, K. J. Temporal regulation of topoisomerase IV activity in E. coli. Mol. Cell 11, 189–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hiasa, H. & Marians, K. J. Two distinct modes of strand unlinking during theta-type DNA replication. J. Biol. Chem. 271, 21529–21535 (1996). Demonstrates the requirement for a type II topoisomerase during fork convergence in a bacterial reconstituted system.

    Article  CAS  PubMed  Google Scholar 

  19. Hiasa, H. & Marians, K. J. Tus prevents overreplication of oriC plasmid DNA. J. Biol. Chem. 269, 26959–26968 (1994).

    CAS  PubMed  Google Scholar 

  20. Wendel, B. M., Courcelle, C. T. & Courcelle, J. Completion of DNA replication in Escherichia coli. Proc. Natl Acad. Sci. USA 111, 16454–16459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markovitz, A. A new in vivo termination function for DNA polymerase I of Escherichia coli K12. Mol. Microbiol. 55, 1867–1882 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan, D. L. & O'Donnell, M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 10, 647–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sowd, G. A. & Fanning, E. A wolf in sheep's clothing: SV40 co-opts host genome maintenance proteins to replicate viral DNA. PLoS Pathog. 8, e1002994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weaver, D. T., Fields-Berry, S. C. & DePamphilis, M. L. The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41, 565–575 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Seidman, M. M. & Salzman, N. P. Late replicative intermediates are accumulated during simian virus 40 DNA replication in vivo and in vitro. J. Virol. 30, 600–609 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tapper, D. P. & Depamphilis, M. L. Discontinuous DNA-replication: accumulation of Simian virus 40 DNA at specific stages in its replication. J. Mol. Biol. 120, 401–422 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Sebring, E. D., Kelly, T. J. Jr, Thoren, M. M. & Salzman, N. P. Structure of replicating Simian virus 40 deoxyribonucleic acid molecules. J. Virol. 8, 478–490 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine, A. J., Kang, H. S. & Billheimer, F. E. DNA replication in SV40 infected cells. I. Analysis of replicating SV40 DNA. J. Mol. Biol. 50, 549–568 (1970).

    Article  CAS  PubMed  Google Scholar 

  29. Tapper, D. P. & DePamphilis, M. L. Preferred DNA sites are involved in the arrest and initiation of DNA synthesis during replication of SV40 DNA. Cell 22, 97–108 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Sundin, O. & Varshavsky, A. Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25, 659–669 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Sundin, O. & Varshavsky, A. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21, 103–114 (1980). Proposes a mechanism for fork convergence that involves fork rotation and pre-catenane generation during SV40 replication termination.

    Article  CAS  PubMed  Google Scholar 

  32. Ishimi, Y., Sugasawa, K., Hanaoka, F., Eki, T. & Hurwitz, J. Topoisomerase II plays an essential role as a swivelase in the late stage of Sv40 chromosome-replication in vitro. J. Biol. Chem. 267, 462–466 (1992).

    CAS  PubMed  Google Scholar 

  33. Snapka, R. M., Powelson, M. A. & Strayer, J. M. Swiveling and decatenation of replicating Simian virus 40 genomes in vivo. Mol. Cell. Biol. 8, 515–521 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, M. C., Birkenmeier, E. & Salzman, N. P. Simian virus 40 DNA replication: characterization of gaps in the termination region. J. Virol. 17, 614–621 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tack, L. C. & DePamphilis, M. L. Analysis of Simian virus 40 chromosome–T-antigen complexes: T-antigen is preferentially associated with early replicating DNA intermediates. J. Virol. 48, 281–295 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Waga, S. & Stillman, B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369, 207–212 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, T. S., Wigley, D. B. & Walter, J. C. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem. Sci. 30, 437–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Yardimci, H. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurat, C. F., Yeeles, J. T., Patel, H., Early, A. & Diffley, J. F. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65, 117–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeeles, J. T., Janska, A., Early, A. & Diffley, J. F. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017). Describes a reconstituted yeast system that fully supports replication initiation and elongation but that exhibits limited capacity for termination.

    Article  CAS  PubMed  Google Scholar 

  44. Dewar, J. M., Budzowska, M. & Walter, J. C. The mechanism of DNA replication termination in vertebrates. Nature 525, 345–350 (2015). Describes a biochemical mechanism for replication termination in frog egg extracts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moreno, S. P., Bailey, R., Campion, N., Herron, S. & Gambus, A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346, 477–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Fachinetti, D. et al. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell 39, 595–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGuffee, S. R., Smith, D. J. & Whitehouse, I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol. Cell 50, 123–135 (2013). Shows that localization of termination events is dictated by the timing and location of initiation events in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greenfeder, S. A. & Newlon, C. S. A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 3, 999–1013 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucas, I., Germe, T., Chevrier-Miller, M. & Hyrien, O. Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J. 20, 6509–6519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Charbin, A., Bouchoux, C. & Uhlmann, F. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Res. 42, 340–348 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Schalbetter, S. A., Mansoubi, S., Chambers, A. L., Downs, J. A. & Baxter, J. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability. Proc. Natl Acad. Sci. USA 112, E4565–E4570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baxter, J. & Diffley, J. F. X. Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol. Cell 30, 790–802 (2008). Shows that topoisomerase II is not required for replication fork convergence in yeast and outlines the consequences of decatenation defects.

    Article  CAS  PubMed  Google Scholar 

  54. Dinardo, S., Voelkel, K. & Sternglanz, R. DNA topoisomerase II mutant of Saccharomyces cerevisiae — topoisomerase II Is required for segregation of daughter molecules at the termination of DNA-Replication. Proc. Natl Acad. Sci. USA 81, 2616–2620 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gambus, A. et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J. 28, 2992–3004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duxin, J. P., Dewar, J. M., Yardimci, H. & Walter, J. C. Repair of a DNA–protein crosslink by replication-coupled proteolysis. Cell 159, 346–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maric, M., Maculins, T., De Piccoli, G. & Labib, K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346, 1253596 (2014). Identifies a multistep replicative helicase unloading pathway that requires SCFDia2 and p97 in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dewar, J. M., Low, E., Mann, M., Raschle, M. & Walter, J. C. CRL2-Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Gene Dev. 31, 275–290 (2017). Demonstrates that the ubiquitin ligase CRL2Lrr1 is recruited to the replisome during termination and promotes CMG unloading in frog egg extracts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sonneville, R. et al. CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat. Cell Biol. http://dx.doi.org/10.1038/ncb3500 (2017). Identifies two distinct CMG unloading pathways in worms that operate in S phase and mitosis and require CRL2LRR1 and UBXN3, respectively.

  61. Gambus, A. et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Franz, A. et al. CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol. Cell 44, 85–96 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Fullbright, G., Rycenga, H. B., Gruber, J. D. & Long, D. T. p97 promotes a conserved mechanism of helicase unloading during DNA cross-link repair. Mol. Cell. Biol. 36, 2983–2994 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Koepp, D. M., Kile, A. C., Swaminathan, S. & Rodriguez-Rivera, V. The F-box protein Dia2 regulates DNA replication. Mol. Biol. Cell 17, 1540–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blake, D. et al. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae. Genetics 174, 1709–1727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang, Y. H. et al. Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase. Proc. Natl Acad. Sci. USA 110, 19760–19765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaplan, D. L., Davey, M. J. & O'Donnell, M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 278, 49171–49182 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Long, D. T., Joukov, V., Budzowska, M. & Walter, J. C. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56, 174–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Langston, L. D. et al. CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc. Natl Acad. Sci. USA 111, 15390–15395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kubota, T., Nishimura, K., Kanemaki, M. T. & Donaldson, A. D. The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol. Cell 50, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Dungrawala, H. et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol. Cell 59, 998–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garg, P., Stith, C. M., Sabouri, N., Johansson, E. & Burgers, P. M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18, 2764–2773 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Merlet, J. et al. The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during C. elegans development. Development 137, 3857–3866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zechiedrich, E. L., Khodursky, A. B. & Cozzarelli, N. R. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 11, 2580–2592 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baxter, J. et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331, 1328–1332 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Bastia, D. & Zaman, S. Mechanism and physiological significance of programmed replication termination. Semin. Cell Dev. Biol. 30, 165–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Dalgaard, J. Z. et al. Random and site-specific replication termination. Methods Mol. Biol. 521, 35–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Hamperl, S. & Cimprich, K. A. Conflict resolution in the genome: how transcription and replication make it work. Cell 167, 1455–1467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mohanty, B. K., Bairwa, N. K. & Bastia, D. The Tof1p–Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 103, 897–902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaiswal, R. et al. Functional architecture of the Reb1–Ter complex of Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 113, E2267–E2276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Martinez, P. & Blasco, M. A. Replicating through telomeres: a means to an end. Trends Biochem. Sci. 40, 504–515 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, P., Takai, H. & de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150, 39–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chow, T. T., Zhao, Y., Mak, S. S., Shay, J. W. & Wright, W. E. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev. 26, 1167–1178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Soudet, J., Jolivet, P. & Teixeira, M. T. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Mol. Cell 53, 954–964 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Hogg, M. et al. Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat. Struct. Mol. Biol. 21, 49–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Sfeir, A. J., Chai, W., Shay, J. W. & Wright, W. E. Telomere-end processing the terminal nucleotides of human chromosomes. Mol. Cell 18, 131–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Yeeles, J. T., Poli, J., Marians, K. J. & Pasero, P. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5, a012815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Georgescu, R. et al. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc. Natl Acad. Sci. USA 114, E697–E706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lujan, S. A., Williams, J. S. & Kunkel, T. A. DNA polymerases divide the labor of genome replication. Trends Cell Biol. 26, 640–654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Low for critical feedback on the manuscript, and K. Labib and A. Gambus for sharing results before publication. J.C.W.'s work on termination is supported by US National Institutes of Health (NIH) grant GM80676. J.C.W. is an investigator of the Howard Hughes Medical Institute, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes C. Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Origin of DNA replication

(Origin). The location at which replicative helicases are loaded onto DNA, which are generally site-specific in bacteria and yeast, but not in metazoa.

Replication forks

Splayed DNA structures where the replisome is engaged in DNA synthesis.

Topological stress

A structural distortion of the DNA that is caused when the two strands of the double helix are wrapped around each other too many or too few times.

Supercoils

Superhelical twists of the DNA duplex that arise in response to topological stress.

Topoisomerases

Enzymes that relieve topological stress on DNA by cutting and resealing one (type I) or both (type II) DNA strands.

Pre-catenanes

A double-stranded intertwine between two DNA molecules that occurs behind the replication fork, on recently replicated DNA.

Replisomes

The collections of proteins involved in DNA replication at the replication fork.

Fork stalling

A pathological situation in which replication fork progression is impaired.

Okazaki fragment

A short DNA fragment synthesized on the lagging strand template.

Catenane

A double-stranded intertwine between two DNA molecules.

Replicon

A DNA region that is replicated by two replication forks emanating from a single origin.

Replisome progression complex

A large assembly of proteins bound directly or indirectly to the replicative CMG (CDC45–MCM–GINS) helicase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewar, J., Walter, J. Mechanisms of DNA replication termination. Nat Rev Mol Cell Biol 18, 507–516 (2017). https://doi.org/10.1038/nrm.2017.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing