Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tracking immune cells in vivo using magnetic resonance imaging

Abstract

The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and 19F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing ex vivo and in situ labelling of cells with magnetic resonance nanoparticle contrast agents.
Figure 2: The development of MRI reporter genes.
Figure 3: Tracking immune cells with MRI using SPIO nanoparticles and PFC emulsions.

Similar content being viewed by others

References

  1. Bousso, P. & Moreau, H. D. Functional immunoimaging: the revolution continues. Nature Rev. Immunol. 12, 858–864 (2012).

    CAS  Google Scholar 

  2. Thakur, M. L., Lavender, J. P., Arnot, R. N., Silvester, D. J. & Segal, A. W. Indium-111-labeled autologous leukocytes in man. J. Nuclear Med. 18, 1014–1021 (1977).

    CAS  Google Scholar 

  3. Tjuvajev, J. G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).

    CAS  PubMed  Google Scholar 

  4. Koehne, G. et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nature Biotech. 21, 405–413 (2003).

    CAS  Google Scholar 

  5. Dubey, P. et al. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc. Natl Acad. Sci. USA 100, 1232–1237 (2003).

    CAS  PubMed  Google Scholar 

  6. Yaghoubi, S. S. et al. Noninvasive detection of therapeutic cytolytic T cells with [18F]-FHBG PET in a patient with glioma. Nature Clin. Pract. Oncol. 6, 53–58 (2009).

    CAS  Google Scholar 

  7. Aoki, I. et al. Cell labeling for magnetic resonance imaging with the T-1 agent manganese chloride. NMR Biomed. 19, 50–59 (2006).

    CAS  PubMed  Google Scholar 

  8. Hawrylak, N. et al. Nuclear-magnetic-resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp. Neurol. 121, 181–192 (1993).

    CAS  PubMed  Google Scholar 

  9. Bulte, J. W. M. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    CAS  Google Scholar 

  10. Gorelik, M. et al. Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology 265, 175–185 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Cromer Berman, S. M. et al. Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn. Reson. Med. 69, 255–262 (2013).

    CAS  PubMed  Google Scholar 

  12. Bulte, J. W. et al. Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn. Reson. Med. 25, 148–157 (1992).

    CAS  PubMed  Google Scholar 

  13. Bulte, J. W. et al. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn. Reson. Med. 29, 32–37 (1993).

    CAS  PubMed  Google Scholar 

  14. Yeh, T. C., Zhang, W., Ildstad, S. T. & Ho, C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn. Reson. Med. 30, 617–625 (1993).

    CAS  PubMed  Google Scholar 

  15. Frank, J. A. et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487 (2003).

    PubMed  Google Scholar 

  16. Arbab, A. S. et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553–559 (2005).

    CAS  PubMed  Google Scholar 

  17. Thu, M. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nature Med. 18, 463–467 (2012).

    CAS  PubMed  Google Scholar 

  18. Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G. & Morel, P. A. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006–1013 (2003).

    CAS  PubMed  Google Scholar 

  19. Walczak, P. et al. Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  20. Kircher, M. F. et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003).

    CAS  PubMed  Google Scholar 

  21. Daldrup-Link, H. E. et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur. Radiol. 15, 4–13 (2005).

    PubMed  Google Scholar 

  22. Moore, A. et al. MRI of insulitis in autoimmune diabetes. Magn. Reson. Med. 47, 751–758 (2002).

    PubMed  Google Scholar 

  23. Anderson, S. A. et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann. Neurol. 55, 654–659 (2004).

    PubMed  Google Scholar 

  24. Baumjohann, D. et al. In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur. J. Immunol. 36, 2544–2555 (2006).

    CAS  PubMed  Google Scholar 

  25. Rohani, R. et al. In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Mol. Imaging Biol. 13, 679–694 (2011).

    PubMed  Google Scholar 

  26. Long, C. M., van Laarhoven, H. W., Bulte, J. W. & Levitsky, H. I. Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 69, 3180–3187 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shapiro, E. M., Medford-Davis, L. N., Fahmy, T. M., Dunbar, C. E. & Koretsky, A. P. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol. Imaging 2, 147–153 (2007).

    CAS  PubMed  Google Scholar 

  28. Heyn, C. et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn. Reson. Med. 55, 23–29 (2006).

    PubMed  Google Scholar 

  29. Chan, T. W., Eley, C., Liberti, P., So, A. & Kressel, H. Y. Magnetic resonance imaging of abscesses using lipid-coated iron oxide particles. Investigative Radiol. 27, 443–449 (1992).

    CAS  Google Scholar 

  30. Dousset, V. et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am. J. Neuroradiol. 27, 1000–1005 (2006).

    CAS  PubMed  Google Scholar 

  31. Vellinga, M. M. et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008).

    PubMed  Google Scholar 

  32. Sosnovik, D. E. & Nahrendorf, M. Cells and iron oxide nanoparticles on the move: magnetic resonance imaging of monocyte homing and myocardial inflammation in patients with ST-elevation myocardial infarction. Circ. Cardiovasc. Imaging 5, 551–554 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Gaglia, J. L. et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J. Clin. Invest. 121, 442–445 (2011).

    CAS  PubMed  Google Scholar 

  34. Luciani, A. et al. Adipose tissue macrophages: MR tracking to monitor obesity-associated inflammation. Radiology 263, 786–793 (2012).

    PubMed  Google Scholar 

  35. Kanno, S. et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104, 934–938 (2001).

    CAS  PubMed  Google Scholar 

  36. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl. J. Med. 348, 2491–2499 (2003).

    PubMed  Google Scholar 

  37. Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    CAS  PubMed  Google Scholar 

  38. Siglienti, I., Bendszus, M., Kleinschnitz, C. & Stoll, G. Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J. Neuroimmunol. 173, 166–173 (2006).

    CAS  PubMed  Google Scholar 

  39. Verdijk, P. et al. Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int. J. Cancer 120, 978–984 (2007).

    CAS  PubMed  Google Scholar 

  40. de Vries, I. J. M. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotech. 23, 1407–1413 (2005).

    CAS  Google Scholar 

  41. Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152, 167–173 (1989).

    CAS  PubMed  Google Scholar 

  42. Riess, J. G. Oxygen carriers (“blood substitutes”) — raison d'etre, chemistry, and some physiology. Chem. Rev. 101, 2797–2919 (2001).

    CAS  PubMed  Google Scholar 

  43. Janjic, J. M. & Ahrens, E. T. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 1, 492–501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Holland, G. N., Bottomley, P. A. & Hinshaw, W. S. F-19 magnetic-resonance imaging. J. Magn. Reson. 28, 133–136 (1977).

    CAS  Google Scholar 

  45. Ahrens, E. T., Flores, R., Xu, H. Y. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotech. 23, 983–987 (2005).

    CAS  Google Scholar 

  46. Bulte, J. W. M. Hot spot MRI emerges from the background. Nature Biotech. 23, 945–946 (2005).

    CAS  Google Scholar 

  47. Janjic, J. M. Srinivas, M., Kadayakkara, D. K. & Ahrens, E. T. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am. Chem. Soc. 130, 2832–2841 (2008).

    CAS  PubMed  Google Scholar 

  48. Srinivas, M. et al. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn. Reson. Med. 62, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Helfer, B. M. et al. Functional assessment of human dendritic cells labeled for in vivo F-19 magnetic resonance imaging cell tracking. Cytotherapy 12, 238–250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Srinivas, M., Morel, P. A., Ernst, L. A., Laidlaw, D. H. & Ahrens, E. T. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn. Reson. Med. 58, 725–734 (2007).

    CAS  PubMed  Google Scholar 

  51. Kadayakkara, D. K. et al. Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 39, 510–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahrens, E. T., Young, W. B., Xu, H. & Pusateri, L. K. Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. Biotechniques 50, 229–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kadayakkara, D. K., Ranganathan, S., Young, W. B. & Ahrens, E. T. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Invest. 92, 636–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hertlein, T. et al. Visualization of abscess formation in a murine thigh infection model of Staphylococcus aureus by F-19-magnetic resonance imaging (MRI). PLoS ONE 6, e18246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hitchens, T. K. et al. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn. Reson. Med. 65, 1144–1153 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Flogel, U. et al. Noninvasive detection of graft rejection by in vivo19F MRI in the early stage. Am. J. Transplant. 11, 235–244 (2011).

    CAS  PubMed  Google Scholar 

  57. Noth, U. et al. Perfluoro-15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif. Cells Blood Substit. Immobil. Biotechnol. 25, 243–254 (1997).

    CAS  PubMed  Google Scholar 

  58. Weise, G., Basse-Luesebrink, T. C., Wessig, C., Jakob, P. M. & Stoll, G. In vivo imaging of inflammation in the peripheral nervous system by 19F MRI. Exp. Neurol. 229, 494–501 (2011).

    CAS  PubMed  Google Scholar 

  59. Ebner, B. et al. Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ. Cardiovasc. Imag. 3, U202–U109 (2010).

    Google Scholar 

  60. Flogel, U. et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140–148 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. O'Hanlon, C. E., Amede, K. G., O'Hear, M. R. & Janjic, J. M. NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging. J. Fluor. Chem. 137, 27–33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Morel, P. A. et al. Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules. J. Leukoc. Biol. 90, 539–550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tannous, B. A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nature Methods 3, 391–396 (2006).

    CAS  PubMed  Google Scholar 

  64. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med. 6, 351–355 (2000).

    CAS  PubMed  Google Scholar 

  65. Bar-Shir, A. et al. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J. Am. Chem. Soc. 135, 1617–1624 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ahrens, E. T. Contrast agents for magnetic resonance imaging and methods related thereto. US Patent 10/384,496 (2003).

  67. Genove, G., DeMarco, U., Xu, H. Y., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nature Med. 11, 450–454 (2005).

    CAS  PubMed  Google Scholar 

  68. Cohen, B., Dafni, H., Meir, G., Harmelin, A. & Neeman, M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7, 109–117 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iordanova, B. & Ahrens, E. T. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. Neuroimage 59, 1004–1012 (2012).

    CAS  PubMed  Google Scholar 

  70. Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotech. 25, 217–219 (2007).

    CAS  Google Scholar 

  71. Sherry, A. D. & Woods, M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu. Rev. Biomed. Eng. 10, 391–411 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chan, K. W. et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nature Mater. 12, 268–275 (2013).

    CAS  Google Scholar 

  73. Airan, R. D. et al. MRI biosensor for protein kinase A encoded by a single synthetic gene. Magn. Reson. Med. 68, 1919–1923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kadayakkara, D. K., Janjic, J. M., Pusateri, L. K., Young, W. B. & Ahrens, E. T. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magn. Reson. Med. 64, 1252–1259 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Sotak, C. H. et al. A new perfluorocarbon for use in fluorine-19 magnetic resonance imaging and spectroscopy. Magn. Reson. Med. 29, 188–195 (1993).

    CAS  PubMed  Google Scholar 

  76. Zhong, J., Sakaki, M., Okada, H. & Ahrens, E. T. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS One 8, e59479 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Partlow, K. C. et al. F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 21, 1647–1654 (2007).

    CAS  PubMed  Google Scholar 

  78. Gilad, A. A. et al. Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magn. Reson. Med. 61, 970–974 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Liu, G. et al. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn. Reson. Med. 67, 1106–1113 (2012).

    CAS  PubMed  Google Scholar 

  80. Bulte, J. W. In vivo MRI cell tracking: clinical studies. AJR Am. J. Roentgenol. 193, 314–325 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Richards, J. M. J. et al. Clinical cell tracking of mononuclear cells using magnetic resonance imaging and superparamagnetic particles of iron oxide. Br. J. Surg. 98, 4–4 (2011).

    Google Scholar 

  82. Keupp, J. et al. Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn. Reson. Med. 66, 1116–1122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Aarntzen, E. H. et al. In vivo tracking techniques for cellular regeneration, replacement, and redirection. J. Nucl. Med. 53, 1825–1828 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bulte, J. W. et al. MPI cell tracking: what can we learn from MRI? Proc. Soc. Photo-Opt. Instrum. Eng. 7965, 79650z (2011).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by US National Institutes of Health grants R01-CA134633, P41-EB0019772, R01-NS045062, R01-EB007825, R01-DA026299 and U54-CA151838, the Maryland Stem Cell Research Foundation and the California Institute for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric T. Ahrens or Jeff W. M. Bulte.

Ethics declarations

Competing interests

E.T.A. is a stockholder and board member of Celsense, Inc., Pittsburgh, Pennsylvania, USA.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrens, E., Bulte, J. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 13, 755–763 (2013). https://doi.org/10.1038/nri3531

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing