Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling

Key Points

  • The co-stimulatory receptors CD28, inducible co-stimulatory molecule (ICOS) and cytotoxic T lymphocyte antigen 4 (CTLA4) share a common Tyr-Xaa-Xaa-Met motif for the recruitment of phosphatidylinositol 3-kinase (PI3K), which allows for the membrane recruitment and activation of proteins with pleckstrin-homology domains, such as phosphoinositide-dependent kinase 1 (PDK1), protein kinase B (PKB) and glycogen synthase kinase 3 (GSK3). In turn, this implies a role for co-receptors in events such as cellular metabolism, protein translation and apoptosis.

  • Increasing evidence points to CD28 as a signalling unit that can generate intracellular signals independently of the T-cell receptor (TCR).

  • CD28 also has unique properties that are indicated by the presence of a Tyr-Met-Asn-Met motif and several proline residues. The presence of an Asp residue in the plus two position that is absent in ICOS and CTLA4 allows for the binding of growth-factor receptor-bound protein 2 (GRB2), and possibly the binding of GRB2-related adaptor protein (GADS), connecting the co-receptor to VAV and the up-regulation of JUN N-terminal kinase (JNK).

  • Recent studies have implicated PKB, PKC and members of the membrane-associated guanylate kinase (MAGUK) family in the regulation of nuclear factor-κB (NF-κB) and the inhibitor of NF-κB kinase (IKK) complex by CD28.

  • Although ICOS has a Tyr-Xaa-Xaa-Met motif for the binding of PI3K, it lacks other crucial residues that are found in CD28 and CTLA4 and, as a consequence, has a more limited signalling capacity. PI3K–PKB activation might be insufficient to account for ICOS-mediated upregulation of T helper 2 cytokines.

  • Besides binding to PI3K, CTLA4 also has unique proline residues and a Tyr-Val-Lys-Met site that, in a non-phosphorylated state, binds clathrin adaptor complexes, AP1 and AP2. Present models to account for negative signalling include associated phosphatases SHP2 and PP2A.

  • Despite the complexity of co-receptor signalling, the positive versus negative roles of CD28 and CTLA4 on T-cell function is indicated by the ability of the co-receptors to modulate the release of lipid microdomains or rafts to the surface of cells. This will indirectly increase or limit the availability of signalling proteins, such as linker for activation of T cells (LAT), that are required for TCR signalling.

Abstract

Many studies have shown the central importance of the co-receptors CD28, inducible costimulatory molecule (ICOS) and cytotoxic T lymphocyte antigen 4 (CTLA4) in the regulation of many aspects of T-cell function. CD28 and ICOS have both overlapping and distinct functions in the positive regulation of T-cell responses, whereas CTLA4 negatively regulates the response. The signalling pathways that underlie the function of each of the co-receptors indicate their shared and unique properties and provide compelling hints of functions that are as yet uncovered. Here, we outline the shared and distinct signalling events that are associated with each of the co-receptors and provide unifying concepts that are related to signalling functions of these co-receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the cytoplasmic domains of human CD28, ICOS and CTLA4.
Figure 2: CD28–PI3K–PDK1–PKB and CD28–VAV pathways.
Figure 3: CD28 and the regulation of NF-κB Pathway.
Figure 4: ICOS signalling pathways.
Figure 5: CTLA4 signalling pathways.
Figure 6: Lipid rafts: integration of positive and negative co-signals.

Similar content being viewed by others

References

  1. Bretscher, P. A. A two-step, two-signal model for the primary actvation of precursor helper T cells. Proc. Natl Acad. Sci. USA 96, 185–190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dustin, M. L. & Shaw, A. S. Co-stimulation: building an immunological synapse. Science 283, 649–650 (1999).

    CAS  PubMed  Google Scholar 

  3. Monks, C. R., Freiburg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segrgation of supramolecular activation clusters in T cells. Nature 396, 82–86 (1998).

    Google Scholar 

  4. Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L. & Schlossman, S. F. The CD4 receptor is complexed in detergent lysates to a protein tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl Acad. Sci. USA 85, 5190–5194 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    CAS  PubMed  Google Scholar 

  6. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    CAS  PubMed  Google Scholar 

  7. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    CAS  PubMed  Google Scholar 

  8. Peach, R. J. et al. Complementarity determining region 1 (CDR1)-and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 180, 2049–2058 (1994).

    CAS  PubMed  Google Scholar 

  9. Collins, A. V. et al. The interaction properties of co-stimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  10. Stamper, C. C. et al. Crystal structure of the B7-1–CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

    CAS  PubMed  Google Scholar 

  11. Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity 12, 51–60 (2000).

    CAS  PubMed  Google Scholar 

  12. Bluestone, J. New perspectives of CD28–B7 mediated T cell co-stimulation. Immunity 2, 555–559 (1995).

    CAS  PubMed  Google Scholar 

  13. Thompson, C. B. Distinct roles for the co-stimulatory ligands B7-1 and B7-2 in T helper cell differentiation? Cell 81, 979–982 (1995).

    CAS  PubMed  Google Scholar 

  14. Greenwald, R. J., Latchman, Y. E. & Sharpe, A. H. Negative co-receptors on lymphocytes. Curr. Opin. Immunol. 14, 391–396 (2002).

    CAS  PubMed  Google Scholar 

  15. Shahinian, A. et al. Differential T-cell co-stimulatory requirement in CD28-deficient mice. Science 261, 609–612 (1993).

    CAS  PubMed  Google Scholar 

  16. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus co-stimulation. Immunity 7, 549–557 (1997).

    CAS  PubMed  Google Scholar 

  17. Kuchroo, V. K. et al. B7-1 and B7-2 co-stimulatory molecules activate differentially the TH1/TH2 developmental pathways: application to autoimmune disease therapy. Cell 80, 707–718 (1995).

    CAS  PubMed  Google Scholar 

  18. Schwartz, R. H. T cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  19. Coyle, A. J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    CAS  PubMed  Google Scholar 

  20. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    CAS  PubMed  Google Scholar 

  21. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  22. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    CAS  PubMed  Google Scholar 

  23. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    CAS  PubMed  Google Scholar 

  24. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    CAS  PubMed  Google Scholar 

  25. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  26. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  27. Bachmann, M. F. et al. Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. J. Immunol. 160, 95–100 (1998).

    CAS  PubMed  Google Scholar 

  28. Prasad, K. V. S. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl Acad. Sci. USA 91, 2834–2838 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. August, A. & Dupont, B. CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int. Immnuol. 6, 769–774 (1994).

    CAS  Google Scholar 

  30. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signaling. Nature 369, 327–329 (1994).

    CAS  PubMed  Google Scholar 

  31. Truitt, K. E. et al. CD28 delivers co-stimulatory signals independently of its association with phosphatidylinositol-3-kinase. J. Immunol. 155, 4702–4710 (1995).

    CAS  PubMed  Google Scholar 

  32. Hutchcroft, J. E. et al. Phorbol ester treatment inhibits phosphatidylinositol 3-kinase activation by, and association with, CD28, a T-lymphocyte surface receptor. Proc. Natl Acad. Sci. USA 92, 8808–8812 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider, H., Prasad, K. V. S., Shoelson, S. E. & Rudd, C. E. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351–355 (1995).

    CAS  PubMed  Google Scholar 

  34. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    CAS  PubMed  Google Scholar 

  35. Schneider, H., Cai, Y. -C., Prasad, K. V. S., Shoelson, S. E. & Rudd, C. E. T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras. Eur. J. Immunol. 25, 1044–1050 (1995).

    CAS  PubMed  Google Scholar 

  36. Kim, H. -H., Tharayil, M. & Rudd, C. E. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J. Biol. Chem. 273, 296–301 (1998).

    CAS  PubMed  Google Scholar 

  37. Okkenhaug, K. & Rottapel, R. Grb-2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. J. Biol. Chem. 273, 21194–21202 (1998).

    CAS  PubMed  Google Scholar 

  38. Ellis, J. H. et al. GRID: a novel Grb-2 related adapter protein that interacts with the activated T cell co-stimulatory receptor CD28. J. Immunol. 164, 5805–5814 (2000).

    CAS  PubMed  Google Scholar 

  39. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    CAS  PubMed  Google Scholar 

  40. Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144–151 (1997).

    CAS  PubMed  Google Scholar 

  41. Schneider, H. et al. Cytolytic T lymphocyte-associated antigen-4 and the TcR-ζ-CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868–1879 (1999).

    CAS  PubMed  Google Scholar 

  42. Marengere, L. E. M. et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell co-stimulatory receptor CD28. J. Immunol. 159, 3220–3229 (1997).

    CAS  PubMed  Google Scholar 

  43. Holdorf, A. D. et al. Proline residues in CD28 and Src homolgy (SH)3 domain of LCK are required for T cell co-stimulation. J. Exp. Med. 190, 375–384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Prasad, K. V. S. et al. Phosphatidyl (PI)3-kinase and PI4-kinase binding to the CD4-p56lck complex: the p56lck SH3 domain binds to PI3-kinase but not PI4-kinase. Mol. Cell. Biol. 13, 7708–7717 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bruyns, E. et al. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR–CD3-ζ complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med. 188, 561–575 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Raab, M. et al. p56lck and p59fyn regulate CD28 recruitment to phosphatidylinositol 3-kinase, growth factor receptor-bound GRB-2 and T cell-specific protein-tyrosine kinase ITK: implications for co-stimulation. Proc. Natl Acad. Sci. USA 92, 8891–8895 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyatake, S., Nakaseko, C., Umemori, H., Yamamoto, T. & Saito, T. Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem. Biophys. Res. Commun. 249, 444–448 (1998).

    CAS  PubMed  Google Scholar 

  48. Schneider, H., Schwartzberg, P. L. & Rudd, C. E. Resting lymphocyte kinase (Rlk/Txx) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem. Biophys. Res. Commun. 252, 14–19 (1998).

    CAS  PubMed  Google Scholar 

  49. Holdorf, A. D., Lee, K. H., Burack, W. R., Allen, P. M. & Shaw, A. S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol. 3, 259–264 (2002). This paper shows that the binding of CD28 to the SH3 domain of LCK leads to its activation and sustained LCK signalling at the T cell–antigen-presenting cell (APC) interface.

    CAS  Google Scholar 

  50. Harriague, J. & Bismuth, G. Imaging antigen-induced PI3K activation in T cells. Nature Immunol. 3, 1090–1096 (2002).

    CAS  Google Scholar 

  51. Costello, P. S., Gallagher, M. & Cantrell, D. A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nature Immunol. 3, 1082–1089 (2002).

    CAS  Google Scholar 

  52. Lu, Y., Phillips, C. A. & Trevillyan, J. M. Phosphatidylinositol 3-kinase activity is not essential for CD28 co-stimulatory activity in Jurkat T cells: studies with a selective inhibitor, wortmannin. Eur. J. Immunol. 25, 533–537 (1995).

    CAS  PubMed  Google Scholar 

  53. Cai, Y. -C. et al. Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86–CD28-mediated co-stimulation. Immunity 3, 417–426 (1995).

    CAS  PubMed  Google Scholar 

  54. Cefai, D., Cai, Y. -C., Hu, H. & Rudd, C. E. CD28 co-stimulatory regimes differ in their dependence on phosphatidylinositol 3-kinase: common cosignals induced by CD80 and CD86. Int. Immunol. 8, 1609–1616 (1996).

    CAS  PubMed  Google Scholar 

  55. Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol. 20, 6945–6957 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Harada, Y. et al. Novel role of phosphatidylinositol 3-kinase in CD28-mediated co-stimulation. J. Biol. Chem. 276, 9003–9008 (2001).

    CAS  PubMed  Google Scholar 

  57. Harada, Y. et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated co-stimulation in vivo. J. Immunol. 166, 3797–3803 (2001).

    CAS  PubMed  Google Scholar 

  58. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunol. 325, 325–332 (2001). An interesting study showing that mutation of the Tyr residue in the Tyr-Met-Asn-Met motif of CD28 that disrupts the binding of phosphatidylinositol 3-kinase (PI3K) and growth-factor receptor-bound protein 2 (GRB2) interferes with the ability of CD28 to prevent apoptosis in response to high-affinity peptide ligands.

    Google Scholar 

  59. Burr, J. S. et al. Cutting edge: distinct motifs within CD28 regulate cell proliferation and induction of Bcl-XL. J. Immunol. 166, 5331–5335 (2001).

    CAS  PubMed  Google Scholar 

  60. Yao, Y. & Cooper, G. M. Requirement for phosphatidylinositol 3-kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006 (1995).

    CAS  PubMed  Google Scholar 

  61. Jones, R. G. et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med. 196, 335–348 (2002). This study shows that active protein kinase B (PKB) can alter the composition of the CD95-associated death-inducing signalling complex (DISC). T cells that express active PKB have reduced acitvation of caspase-8, pro-apoptotic BID (BH3-interacting domain death agonist) and caspase-3, owing to the impaired recruitment of pro-caspase-8 to the DISC. This supports the notion of an important role for the CD28–PI3K–phosphoinositide-dependent kinase 1 (PDK1)–PKB pathway in the prevention of apoptosis by CD28, which is mediated by CD95.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dahl, A. M. et al. Expression of Bcl-XL restores cell survival, but not proliferation and effector differentiation, in CD28-deficient T lymphocytes. J. Exp. Med. 191, 2031–2038 (2000). This study shows that despite the importance of apoptosis, it alone cannot account for the phenotype of CD28-deficient mice. Overexpression of BCL-X L does not re-constitute a normal phenotype in the CD28-deficient mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002). The authors report that the increase in glucose transport (that is, expression of the Glut4 receptor) and glycolysis depends on the ligation of CD28. Furthermore, the event is PI3K dependent, and constitutively active PKB could increase glycolysis. This study indicates that the CD28–PI3K interaction regulates glycolysis through CD28–PI3K-mediated regulation of PKB.

    CAS  PubMed  Google Scholar 

  64. Diehn, M. et al. Genomic expression programs and the integration of the CD28 co-stimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA 99, 11796–11801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Appleman, L. J., van Puijenbroek, A. A. F. L., Shu, K. M., Nadler, L. M. & Boussiotis, V. A. CD28 co-stimulation mediates downregulation of p27kip1 and cell cycle progression by activation of the PI3K–PKB signaling pathway in primary human T cells. J. Immunol. 168, 2729–2736 (2002).

    CAS  PubMed  Google Scholar 

  66. Ohteki, T. et al. Negative regulation of T cell proliferation and interleukin-2 production by the serine threonine kinase GSK-3. J. Exp. Med. 192, 99–104 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 co-stimulatory signal for upregulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001). This paper shows that retroviral expression of constitutively active PKB (AKT) by T cells can provide substitute signals for CD28 in the upregulation of IL-2 production. This underscores the importance of the CD28-associated PI3K–PDK1–PKB pathway in the regulation of cytokine production.

    CAS  Google Scholar 

  68. Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for co-stimulation of interleukin-2 secretion and association with phosphatidylinositol 3-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Raab, M., Pfister, S. & Rudd, C. E. CD28 signaling via Vav/Slp-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 15, 921–933 (2001). This study shows that low levels of overexpression of VAV and SLP76 (SH2-domain-containing leukocyte proteins of 76 kDa) can convert CD28 into a receptor that can induce the production of IL-2 by Jurkat and primary T cells. This occurred independently of T-cell receptor (TCR) ligation and could provide a pathway to account for in trans co-stimulation mediated by CD28. VAV alone could promote CD28-mediated induction of IL-2 when expressed at higher levels (see reference 76).

    CAS  PubMed  Google Scholar 

  70. Liao, X. C. & Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking ltk. Immunity 3, 757–769 (1995).

    CAS  PubMed  Google Scholar 

  71. Klasen, S., Pages, F., Peyron, J. F., Cantrell, D. A. & Olive, D. Two distinct regions of the CD28 intracytoplasmic domain are involved in the tyrosine phosphorylation of Vav and GTPase activating protein-associated p62 protein. Int. Immunol. 10, 481–489 (1998).

    CAS  PubMed  Google Scholar 

  72. Collins, T. L., Deckert, M. & Altman, A. Views on Vav. Immunol. Today 18, 221–225 (1997).

    CAS  PubMed  Google Scholar 

  73. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20, 1461–1477 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Han, J. et al. Role of substrates and products of PI 3-kinase regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    CAS  PubMed  Google Scholar 

  75. Inabe, K. et al. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J. Exp. Med. 195, 189–200 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Michel, F. et al. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. J. Immunol. 165, 3820–3829 (2000).

    CAS  PubMed  Google Scholar 

  77. Kaga, S., Ragg, S., Rogers, K. A. & Ochi, A. Stimulation of CD28 with B7-2 promotes focal adhesion-like cell contacts where Rho family small G proteins accumulate in T cells. J. Immunol. 160, 24–27 (1998).

    CAS  PubMed  Google Scholar 

  78. Chiang, Y. J. et al. Cbl regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  79. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  80. Su, B. et al. JNK is involved in signal integration during co-stimulation of T lymphocytes. Cell 77, 727–736 (1994).

    PubMed  Google Scholar 

  81. Salojin, K. V., Zhang, J. & Delovitch, T. L. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav–Rac-1–PAK-1–p38 MAPK signaling pathway. J. Immunol. 163, 844–853 (1999).

    CAS  PubMed  Google Scholar 

  82. Marinari, B. et al. Vav cooperates with CD28 to induce NF-κB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur. J. Immunol. 32, 447–456 (2002). This study shows that dominant-negative forms of VAV can effectively block the induction of nuclear factor-κB (NF-κB) activation through a pathway that involves RAC1.

    CAS  PubMed  Google Scholar 

  83. Moller, A., Dienz, O., Hehner, S. P., Droge, W. & Schmitz, M. L. Protein kinase C-θ cooperates with Vav1 to induce JNK activity in T-cells. J. Biol Chem. 276, 20022–20028 (2001).

    CAS  PubMed  Google Scholar 

  84. Villalba, M. et al. A novel functional interaction between Vav and PKC-θ is required for TCR-induced T cell activation. Immunity 12, 151–160 (2000).

    CAS  PubMed  Google Scholar 

  85. Bi, K. et al. Antigen-induced translocation of PKC-θ to membrane rafts is required for T cell activation. Nature Immunol. 2, 556–563 (2001).

    CAS  Google Scholar 

  86. Ghaffari-Tabrizi, N. et al. Protein kinase C-θ, a selective upstream regulator of JNK/SAPK and IL-2 promoter activation in Jurkat T cells. Eur. J. Immunol. 29, 132–142 (1999).

    CAS  PubMed  Google Scholar 

  87. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  88. Arimura, Y. et al. A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in TH cells and regulates their responses. Int. Immunol. 14, 555–566 (2002).

    CAS  PubMed  Google Scholar 

  89. Nishida, M. et al. Novel recognition mode between Vav and Grb2 SH3 domains. EMBO J. 20, 2995–3007 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schneider, H. et al. Cutting Edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169, 3475–3479 (2002).

    CAS  PubMed  Google Scholar 

  91. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    CAS  PubMed  Google Scholar 

  92. Shapiro, V. S., Truitt, K. E., Imboden, J. B. & Weiss, A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol. Cell Biol. 17, 4051–4058 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fraser, J. H., Rincon, M., McCoy, K. D. & Le Gros, G. CTLA-4 ligation attenuates AP-1, NFAT and NF-κB activity in activated T cells. Eur. J. Immunol. 29, 838–844 (1999).

    CAS  PubMed  Google Scholar 

  94. Lai, J. H. et al. Rel A is a potent transcriptional activator of the CD28 response element with the interleukin 2 promoter. Mol. Cell Biol. 15, 4260–4271 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Verweij, C. L., Geerts, M. & Aarden, L. A. Activation of interleukin-2 gene transcription via the T-cell surface molecule CD28 is mediated through an NF-κB-like element. J. Biol. Chem. 266, 14179–14182 (1991).

    CAS  PubMed  Google Scholar 

  96. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T. & Grumont, R. Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18, 6888–6895 (1999).

    CAS  PubMed  Google Scholar 

  97. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 15, 1965–1977 (1995).

    Google Scholar 

  98. Bryan, R. G. et al. Effect of CD28 signal transduction on c-Rel in human peripheral blood T cells. Mol. Cell Biol. 14, 7933–7942 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lai, J. H. & Tan, T. H. CD28 signaling causes a sustained downregulation of IκBα which can be prevented by the immunosuppressant rapamycin. J. Biol. Chem. 269, 30077–30080 (1994).

    CAS  PubMed  Google Scholar 

  100. Harhaj, E. W. et al. Somatic mutagenesis studies of NF-κB signaling in human T cells: evidence for an essential role of IKKγ in NF-κB activation by T-cell co-stimulatory signals and HTLV-I Tax protein. Oncogene 9, 1448–1456 (2000).

    Google Scholar 

  101. Tuosto, L. et al. Mitogen-activated kinase kinase kinase 1 regulates T cell receptor- and CD28-mediated signaling events which lead to NF-κB activation. Eur. J. Immunol. 30, 2445–2454 (2000).

    CAS  PubMed  Google Scholar 

  102. Kane, L. P., Shapiro, V. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    CAS  PubMed  Google Scholar 

  103. Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell Biol. 20, 2556–2568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin, X., Cunningham, E. T., Jr, Mu, Y., Geleziunas, R. & Greene, W. C. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 10, 271–280 (1999).

    PubMed  Google Scholar 

  105. Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J. Immunol. 165, 804–812 (2000).

    CAS  PubMed  Google Scholar 

  106. Dimitratos, S. D., Woods, D. F., Stathakis, D. G. & Bryant, P. J. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 21, 912–921 (1999).

    CAS  PubMed  Google Scholar 

  107. Bertin, J. et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-κB. J. Biol. Chem. 276, 11877–11882 (2001).

    CAS  PubMed  Google Scholar 

  108. McAllister-Lucas, L. M. et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-κB induction. J. Biol. Chem. 276, 30589–30597 (2001).

    CAS  PubMed  Google Scholar 

  109. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nature Immunol. 3, 830–835 (2002). This study provides exciting new data implicating the membrane-associated guanylate kinase (MAGUK)-family members CARMA1 in connecting the TCR–CD28 interaction with the activation of inhibitor of NF-κB kinase (IKK) and NF-κB (also see reference 110).

    CAS  Google Scholar 

  110. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nature Immunol. 3, 836–843 (2002).

    CAS  Google Scholar 

  111. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001). This study implicates BCL10 — a downstream target of CARMA1 — as a new mediator of TCR–CD28-mediated activation of IKK and NF-κB.

    CAS  PubMed  Google Scholar 

  112. Lucas, P. C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κB signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    CAS  PubMed  Google Scholar 

  113. Lin, X., O'Mahony, A., Mu, Y., Geleziunas, R. & Greene, W. C. Protein kinase C-θ participates in NF-κB activation induced by CD3-CD28 co-stimulation through selective activation of IκB kinase-β. Mol. Cell Biol. 20, 2933–2940 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gaide, O. et al. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-κB activation. FEBS Lett. 496, 121–127 (2001).

    CAS  PubMed  Google Scholar 

  115. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    CAS  PubMed  Google Scholar 

  116. Harada, Y. et al. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible co-stimulator (ICOS). J. Exp. Med. 197, 257–262 (2003).

    PubMed  PubMed Central  Google Scholar 

  117. Riley, J. L. et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl Acad. Sci. USA 99, 11790–11795 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, P. E. & Bluestone, J. A. CD28 co-stimulation promotes the production of TH2 cytokines. J. Immunol. 158, 658–665 (1997).

    CAS  PubMed  Google Scholar 

  119. Jenkins, M. K. The ups and downs of T cell co-stimulation. Immunity 1, 443–448 (1994).

    CAS  PubMed  Google Scholar 

  120. Masteller, E. M., Chuang, E., Mullen, A. C., Reiner, S. L. & Thompson, C. B. Structural analysis of CTLA-4 function in vivo. J. Immunol. 164, 5319–5327 (2000).

    CAS  PubMed  Google Scholar 

  121. Fallarino, F., Fields, P. E. & Gajewski, T. F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 188, 205–210 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, H. et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J. Exp. Med. 188, 199–204 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bachmann, M. F., Kohler, G., Ecabert, B., Mak, T. W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  124. Yin, L., Schneider, H. & Rudd, C. E. Short cytoplasmic SDYMNM segment of CD28 is sufficient to convert CTLA-4 to a positive signaling receptor. J. Leukoc. Biol. 73, 178–182 (2003).

    CAS  PubMed  Google Scholar 

  125. Marengere, L. E. M. et al. Regulation of T cell receptor signaling by tyrosine phosphatase Syp association with CTLA-4. Science 272, 1170–1173 (1996).

    CAS  PubMed  Google Scholar 

  126. Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    CAS  PubMed  Google Scholar 

  127. Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  128. Chambers, C. A. et al. The lymphoproliferative defect in CTLA-4-deficient mice is ameliorated by an inhibitory NK cell receptor. Blood 15, 4509–4516 (2002).

    Google Scholar 

  129. Schneider, H. & Rudd, C. E. Tyrosine phosphatase SHP-2 binding to CTLA–4: absence of direct YVKM/YFIP motif recognition. Biochem. Biophys. Res. Comm. 269, 279–283 (2000).

    CAS  PubMed  Google Scholar 

  130. Baroja, M. L. et al. The inhibitory function of CTLA-4 does not require its phosphorylation. J. Immunol. 164, 49–55 (2000).

    CAS  PubMed  Google Scholar 

  131. Gadina, M., Stancato, L. M., Bacon, C. M., Larner, A. C. & O'Shea, J. J. Involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160, 4657–4661 (1998).

    CAS  PubMed  Google Scholar 

  132. Nakaseko, C. et al. Cytotoxic lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J. Exp. Med. 190, 765–774 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cinek, T., Sadra, A. & Imboden, J. B. Tyrosine-independent transmission of inhibitory signals by CTLA-4. J. Immunol. 164, 5–8 (2000).

    CAS  PubMed  Google Scholar 

  134. Schneider, H., da Rocha Dias, S., Hu, H. & Rudd, C. E. A regulatory role for cytoplasmic YVKM motif in CTLA-4 inhibition of TCR signaling. Eur. J. Immunol. 31, 2042–2050 (2001).

    CAS  PubMed  Google Scholar 

  135. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  136. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phophatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Nakaseko, C. et al. Cytotoxic lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J. Exp. Med. 190, 765–774 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Baroja, M. L. et al. Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J. Immunol. 168, 5070–5078 (2002).

    CAS  PubMed  Google Scholar 

  139. Calvo, C. R., Amsen, D. & Kruisbeek, A. M. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor ζ and ZAP70. J. Exp. Med. 186, 1645–1653 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong, C., Davis, R. J. & Flavell, R. A. Signaling by the JNK group of MAP kinases. J. Clin. Immunol. 21, 253–257 (2001).

    CAS  PubMed  Google Scholar 

  141. Brunner, M. C. et al. CTLA-4 mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  142. Olsson, C., Riesbeck, K., Dohlsten, M., Michaelsson, E. & Riebeck, K. CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J. Biol. Chem. 274, 14400–14405 (1999).

    CAS  PubMed  Google Scholar 

  143. Cefai, D. et al. CD28 endoytosis is targeted by mutations that disrupt phosphatidylinositol 3-kinase binding and co-stimulation. J. Immunol. 160, 2223–2230 (1998).

    CAS  PubMed  Google Scholar 

  144. Chuang, E. et al. Regulation of cytotoxic T lymphocyte-associated molecule-4 by src kinases. J. Immunol. 162, 1270–1277 (1999).

    CAS  PubMed  Google Scholar 

  145. Leung, H. T., Bradshaw, J., Cleaveland, J. S. & Linsley, P. S. Cytotoxic T lymphocyte-associated molecule-4, a high avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplamic tail. J. Biol. Chem. 270, 25107–25114 (1995).

    CAS  PubMed  Google Scholar 

  146. Barrat, F. J. et al. Defective CTLA-4 cycling pathway in Chediak-Higashi syndrome: a possible mechanism for deregulation of T lymphocyte activation. Proc. Natl Acad. Sci. USA 96, 8645–8650 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  148. Magee, T., Pirinen, N., Adler, J., Pagakis, S. N. & Parmryd, I. Lipid rafts: cell surface platforms for T cell signaling. Biol. Res. 35, 127–131 (2002).

    CAS  PubMed  Google Scholar 

  149. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    CAS  PubMed  Google Scholar 

  150. Dykstra, M., Cherukuri, A., Sohn, H. W., Tzeng, S. -J. & Pierce, S. K. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    CAS  PubMed  Google Scholar 

  151. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte co-stimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999). This study was the first to show that CD28 can potentiate the appearance and clustering of lipid rafts on the surface of T cells, thereby providing an alternate mechanism to account for the ability of CD28 to potentiate TCR signalling. It is, however, unlikely to account for the unique aspects of CD28 signalling in T cells.

    CAS  PubMed  Google Scholar 

  152. Martin, M., Schneider, H., Azouz, A. & Rudd, C. E. Cytotoxic T lymphocyte antigen 4 potently inhibits cell surface raft expression in its regulation of T cell function. J. Exp. Med. 194, 1675–1681 (2001). The study shows that cytotoxic T lymphocyte antigen 4 (CTLA4) can potently inhibit the appearance of lipid rafts on the surface of primary T cells in response to both CD3 and CD3–CD28 stimulation. Furthermore, the effect of CD28 was found to induce raft expression mainly of peripheral T cells that otherwise would not express rafts in response to TCR ligation. The increase in raft expression by CD28 and its inhibition by CTLA4 is reflected by changes in the presence of associated linker for activation of T cells (LAT).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chikuma, S., Imboden, J. B. & Bluestone, J. A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135 (2003). This study provides evidence that CTLA4 might also interfere with the entry of the TCR into rafts on the surface of cells. This underlines the close proximity of CTLA4 with the TCR complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    CAS  PubMed  Google Scholar 

  155. Michel, F., Attal-Bonnefoy, G., Mangino, G., Mise-Omata, S. & Acuto, O. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity 15, 935–945 (2001).

    CAS  PubMed  Google Scholar 

  156. Burack, W. R., Lee, K. -H., Holdorf, A. D., Dustin, M. L. & Shaw, A. S. Cutting Edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841 (2002).

    CAS  PubMed  Google Scholar 

  157. Balamuth, F., Leitenberg, D., Unternaehrer, J., Mellman, I. & Bottomly, K. Distinct patterns of membrane microdomain partitioning in TH1 and TH2 cells. Immunity 15, 729–738 (2001).

    CAS  PubMed  Google Scholar 

  158. Porter, J. C., Bracke, M., Smith, A., Davies, D. & Hogg, N. Signaling through integrin LFA-1 leads to filamentous actin polymerization and remodeling, resulting in enhanced T cell adhesion. J. Immunol. 168, 6330–6335 (2002).

    CAS  PubMed  Google Scholar 

  159. Bromley, S. K. et al. The immunological synapse and CD28–CD80 interactions. Nature Immunol. 2, 1159–1166 (2001).

    CAS  Google Scholar 

  160. Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535–543 (1996).

    CAS  PubMed  Google Scholar 

  161. Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    CAS  PubMed  Google Scholar 

  162. Vanhaesebroeck, B. & Alessi, D. R. The PI3K–PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    CAS  PubMed  Google Scholar 

  164. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    CAS  PubMed  Google Scholar 

  165. Li, T. et al. Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2, 451–460 (1995).

    CAS  PubMed  Google Scholar 

  166. Zheng, Y., Bagrodia, S. & Cerione, R. A. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 269, 18727–18730 (1994).

    CAS  PubMed  Google Scholar 

  167. Kang, H., Schneider, H. & Rudd, C. E. Phosphatidylinositol 3-kinase p85 adaptor function in T-cells. J. Biol. Chem. 277, 912–921 (2002).

    CAS  PubMed  Google Scholar 

  168. Fruman, D. A., Snapper, S. B., Yballe, C. M., Davidson, L. & Yu, J. Y. Impaired B cell development and proliferation in the absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  169. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    CAS  PubMed  Google Scholar 

  170. Parry, R. V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur. J. Immunol. 27, 2495–2501 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to apologize to those colleagues whose excellent original work could not be referenced due to space limitations. This has been particularly difficult given the broad scope of the review. We thank J. Williams for her critical reading of the review. Work in the laboratory of C.R. was supported by a Principal Research Fellow award from the Wellcome Trust, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Rudd.

Related links

Related links

DATABASES

LocusLink

B7H

BCL10

BIMP1

CARMA1

CD3

CD4

CD7

CD8

CD28

CD80

CD86

CDC42

CTLA4

GADS

GRB2

GSK3

ICOS

IKK

IL-2

IL-4

ITK

JNK

LAT

LCK

LFA1

MEKK1

NFAT

NF-κB

PD1

PDK1

PI3K

PKB

PKC

PP2A

PTEN

RAC1

SLP76

SYK

TIM1

VAV

ZAP70

Glossary

IMMUNOLOGICAL SYNAPSE

A structure that is formed at the cell surface between a T cell and an antigen-presenting cell; also known as the supramolecular activation cluster (SMAC). The T-cell receptor, numerous signal-transduction molecules and adaptors accumulate at this site. Mobilization of the actin cytoskeleton is required for immunological-synapse formation.

D3 LIPIDS

Phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2) is phosphorylated on the D3 position of the inositol ring to yield phosphatidylinositol (3,4,5)-trisphosphate (PtdInsP3). Conversion of PtdInsP3 to PtdIns(3,4)P2 by SH2-domain-containing inositol phosphatase (SHIP2) can also occur. Different pleckstrin-homology domains bind to PtdInsP3 and/or PtdIns(3,4)P2.

DEATH-INDUCING SIGNALLING COMPLEX

(DISC). A complex that is recruited by the death effector molecule FAS (CD95)-associated death domain protein (FADD), which binds to the cytoplasmic tail of CD95. Leads to the activation of caspase-8 and ultimately induces apoptosis.

LIPID RAFTS

Micro-aggregates of cholesterol- and sphingomyelin-enriched microdomains that are thought to occur in the plasma membrane. Also described as glycolipid-enriched microdomains (GEMs) or detergent-insoluble glycosphingolipid-enriched membrane microdomains (DIGs). They function as platforms that compartmentalize crucial components that are involved in signalling.

MEMBRANE-ASSOCIATED GUANYLATE KINASE FAMILY

MAGUK proteins are defined by a basic core of three domains: a SRC-homology 3 (SH3) domain, a domain with homology to the enzyme guanylate kinase (GUK) and a PDZ domain. They are required for several types of cell-junction formation, contribute to cell shape and seem to hold together elements of individual signalling pathways.

MUCOSA-ASSOCIATED LYMPHOID TISSUE PROTEIN 1

(MALT1). A protein that was first indentified as a casual factor in the development of MALT lymphomas, owing to fusion of the MALT1 gene with the apoptosis inhibitor 2 (API2) gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudd, C., Schneider, H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 3, 544–556 (2003). https://doi.org/10.1038/nri1131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing