Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tissue-resident memory T cells: local specialists in immune defence

Key Points

  • Tissue-resident CD4+ and CD8+ T cells have been identified in many tissues and organs of mice and humans. These cells are defined as those that undergo little or no recirculation.

  • Tissue residency is not just a feature of subsets of memory αβ T cells. Other populations of immune cells, including regulatory T cells, natural killer T (NKT) cells, NK cells, γδ T cells and innate lymphoid cells have been defined as being permanently resident in tissues.

  • Expression of CD69 and the integrin CD103 were originally defined as key markers of tissue-resident memory T cells (TRM cells). However, expression levels can differ between T cells in different tissues and TRM cells lacking both of these markers have now been described.

  • TRM cell development involves several checkpoints, including tissue entry, local retention and subsequent responsiveness to local cytokines that support TRM cell formation and survival.

  • TRM cells are crucial for local immunity and recall responses. New generation vaccines should be designed to induce both TRM cells and circulating memory T cells for optimal protection against infection.

Abstract

T cells have crucial roles in protection against infection and cancer. Although the trafficking of memory T cells around the body is integral to their capacity to provide immune protection, studies have shown that specialization of some memory T cells into unique tissue-resident subsets gives the host enhanced regional immunity. In recent years, there has been considerable progress in our understanding of tissue-resident T cell development and function, revealing mechanisms for enhanced protective immunity that have the potential to influence rational vaccine design. This Review discusses the major advances and the emerging concepts in this field, summarizes what is known about the differentiation and the protective functions of tissue-resident memory T cells in different tissues in the body and highlights key unanswered questions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization and migration of memory T cells in tissues.
Figure 2: Localdifferentiation of epithelial TRM cells.
Figure 3: Protective functions of epithelial TRM cells upon secondary infection.

References

  1. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  2. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  3. Masopust, D., Vezys, V., Marzo, A. L. & Lefrançois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  4. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  5. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    CAS  PubMed  Google Scholar 

  6. Mackay, C. R. et al. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur. J. Immunol. 22, 887–895 (1992).

    CAS  PubMed  Google Scholar 

  7. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009). This paper shows for the first time that T RM cells provide enhanced immunity against infection.

    CAS  PubMed  Google Scholar 

  8. Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    CAS  PubMed  Google Scholar 

  9. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    CAS  PubMed  Google Scholar 

  11. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Masopust, D. & Schenkel, J. M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 13, 309–320 (2013).

    CAS  PubMed  Google Scholar 

  17. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schenkel, J. M., Fraser, K. A. & Masopust, D. Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol. 192, 2961–2964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, K. G. et al. Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702–2706 (2012). This paper shows the use of intravascular labelling for the identification of tissue-associated cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013). This study defines the developmental pathway and core transcriptional signature of tissue-resident CD103+CD8+ memory T cells.

    CAS  PubMed  Google Scholar 

  22. Skon, C. N. et al. Transcriptional downregulation of S1PR1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013). This paper provides evidence that the expression of molecules associated with tissue egress needs to be downregulated for T RM cell generation.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bromley, S. K., Thomas, S. Y. & Luster, A. D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    CAS  PubMed  Google Scholar 

  24. Debes, G. F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomura, M., Itoh, K. & Kanagawa, O. Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J. Immunol. 184, 4646–4653 (2010).

    CAS  PubMed  Google Scholar 

  26. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofmann, M., Oschowitzer, A., Kurzhals, S. R., Kruger, C. C. & Pircher, H. Thymus-resident memory CD8+ T cells mediate local immunity. Eur. J. Immunol. 43, 2295–2304 (2013).

    CAS  PubMed  Google Scholar 

  28. Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T cell population in murine salivary glands. Proc. Natl Acad. Sci. USA 108, 16741–16746 (2011).

    CAS  PubMed  Google Scholar 

  29. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA 107, 17872–17879 (2010).

    CAS  PubMed  Google Scholar 

  30. Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tse, S. W., Cockburn, I. A., Zhang, H., Scott, A. L. & Zavala, F. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites. Genes Immun. 14, 302–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of TReg cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015).

    CAS  PubMed  Google Scholar 

  33. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 3, e01659 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Thomas, S. Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA–1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    CAS  PubMed  Google Scholar 

  38. Mizukawa, Y. et al. Direct evidence for interferon-γ production by effector-memory-type intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption. Am. J. Pathol. 161, 1337–1347 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheuk, S. et al. Epidermal TH22 and TC17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192, 3111–3120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Trans. Med. 4, 117ra7 (2012).

    Google Scholar 

  41. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med. 15, 886–892 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    CAS  PubMed  Google Scholar 

  44. Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    CAS  PubMed  Google Scholar 

  46. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014). References 45 and 46 provide a comprehensive evaluation of T cell distribution in human tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    CAS  PubMed  Google Scholar 

  50. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    CAS  PubMed  Google Scholar 

  52. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21, 647–653 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sowell, R. T., Rogozinska, M., Nelson, C. E., Vezys, V. & Marzo, A. L. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J. Immunol. 193, 2067–2071 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Slutter, B., Pewe, L. L., Kaech, S. M. & Harty, J. T. Lung airway-surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity 39, 939–948 (2013).

    CAS  PubMed  Google Scholar 

  56. Mackay, L. K. et al. Cutting Edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    CAS  PubMed  Google Scholar 

  57. Ely, K. H., Cookenham, T., Roberts, A. D. & Woodland, D. L. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol. 176, 537–543 (2006).

    CAS  PubMed  Google Scholar 

  58. Ugur, M., Schulz, O., Menon, M. B., Krueger, A. & Pabst, O. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nat. Commun. 5, 4821 (2014).

    CAS  PubMed  Google Scholar 

  59. Sheridan, B. S. et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40, 747–757 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Hu, Y., Lee, Y. T., Kaech, S. M., Garvy, B. & Cauley, L. S. SMAD4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells. J. Immunol. 194, 2407–2414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Laidlaw, B. J., Craft, J. E. & Kaech, S. M. The multifacted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. (in the press).

  64. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    CAS  PubMed  Google Scholar 

  65. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mackay, L. K. et al. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. J. Immunol. 188, 2173–2178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrançois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24, 439–449 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Grundemann, C. et al. Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J. Immunol. 176, 1311–1315 (2006).

    PubMed  Google Scholar 

  69. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006). This paper shows that the tissue microenvironment influences local T cell differentiation.

    CAS  PubMed  Google Scholar 

  70. Lee, Y. T. et al. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol. 85, 4085–4094 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    CAS  PubMed  Google Scholar 

  72. Kadow, S. et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδ T cells in the murine epidermis. J. Immunol. 187, 3104–3110 (2011).

    CAS  PubMed  Google Scholar 

  73. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  74. Naik, S. et al. Commensal–dendritic cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vezys, V. et al. Memory CD8 T cell compartment grows in size with immunological experience. Nature 457, 196–199 (2009).

    CAS  PubMed  Google Scholar 

  76. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl Acad. Sci. USA 109, 19739–19744 (2012).

    CAS  PubMed  Google Scholar 

  77. Mueller, S. N., Zaid, A. & Carbone, F. R. Tissue-resident T cells: dynamic players in skin immunity. Front. Immunol. 5, 332 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014).

    CAS  PubMed  Google Scholar 

  79. Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Woodland, D. L. & Kohlmeier, J. E. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9, 153–161 (2009).

    CAS  PubMed  Google Scholar 

  81. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  82. Yang, L., Yu, Y., Kalwani, M., Tseng, T.-W. J. & Baltimore, D. Homeostatic cytokines orchestrate the segregation of CD4 and CD8 memory T cell reservoirs in mice. Blood 118, 3039–3050 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fraser, K. A., Schenkel, J. M., Jameson, S. C., Vezys, V. & Masopust, D. Preexisting high frequencies of memory CD8+ T cells favor rapid memory differentiation and preservation of proliferative potential upon boosting. Immunity 39, 171–183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hansen, S. G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293–299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schmidt, N. W. et al. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc. Natl Acad. Sci. USA 105, 14017–14022 (2008).

    CAS  PubMed  Google Scholar 

  86. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McMaster, S. R. et al. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity. PLoS ONE 10, e0115725 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014). References 86 and 88 show that T RM cells can function as innate sensors of infection, triggering an antiviral state in the tissue.

    CAS  PubMed  Google Scholar 

  89. Stary, G. et al. Vaccines. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Turner, D. L. & Farber, D. L. Mucosal resident memory CD4 T cells in protection and immunopathology. Front. Immunol. 5, 331 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Yawalkar, N., Hunger, R. E., Pichler, W. J., Braathen, L. R. & Brand, C. U. Human afferent lymph from normal skin contains an increased number of mainly memory/effector CD4+ T cells expressing activation, adhesion and co-stimulatory molecules. Eur. J. Immunol. 30, 491–497 (2000).

    CAS  PubMed  Google Scholar 

  92. Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 7, 501–510 (2014).

    CAS  PubMed  Google Scholar 

  93. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  94. Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol. 14, 1007–1013 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Smigiel, K. S. et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211, 121–136 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chennupati, V. et al. Intra- and intercompartmental movement of γδ T cells: intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol. 185, 5160–5168 (2010).

    CAS  PubMed  Google Scholar 

  97. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302, 1041–1043 (2003).

    CAS  PubMed  Google Scholar 

  100. Yang, C. Y. et al. The transcriptional regulators ID2 and ID3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12, 1221–1229 (2011).

    CAS  PubMed  Google Scholar 

  101. Hawke, S., Stevenson, P. G., Freeman, S. & Bangham, C. R. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med. 187, 1575–1582 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE 6, e16245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wakim, L. M., Gupta, N., Mintern, J. D. & Villadangos, J. A. Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 14, 238–245 (2013).

    CAS  PubMed  Google Scholar 

  104. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Cuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest. 122, 4606–4620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.N.M. and L.K.M. are supported by grants from the Australian Research Council and from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott N. Mueller or Laura K. Mackay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Immunosurveillance

The monitoring process of the immune system that detects foreign pathogens or abnormal cells in the body.

Immunological memory

The capacity of the immune system to respond more rapidly and more effectively to foreign antigen upon re-encounter.

Effector memory T cells

(TEM cells). A subset of memory T cells that lack expression of the secondary lymphoid homing molecules L-selectin and CC-chemokine receptor 7 (CCR7) and that can be found in non-lymphoid tissues. These memory T cells can exert immediate effector functions and produce cytokines including interferon-γ.

Central memory T cell

(TCM cell). A type of memory T cell that expresses L-selectin and CC-chemokine receptor 7 (CCR7) and that can recirculate through secondary lymphoid organs. TCM cells can produce interleukin-2 and can proliferate extensively in response to restimulation.

Parenchyma

The functional tissue of an organ, supported by the stroma.

Fixed drug eruptions

Allergic reactions that recur at the same site on the skin following each exposure to a particular drug. Exposure to the drug may occur systemically but results in localized lesions.

Mammalian target of rapamycin pathway

(mTOR pathway). mTOR protein is activated by T cell receptor signalling and cytokines, and can regulate cell proliferation, survival, transcription and protein synthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, S., Mackay, L. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16, 79–89 (2016). https://doi.org/10.1038/nri.2015.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2015.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing