Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet, microorganisms and their metabolites, and colon cancer

Key Points

  • Colorectal cancer is a so-called westernized disease and the second leading cause of cancer death worldwide; approximately half of those with the disease will die from it

  • Geographical variation, migration studies and experimental studies provide compelling evidence that environmental factors, rather than genetic dysfunction, are responsible for the development of colorectal cancer

  • Convincing evidence suggests that risk of colon cancer is increased by processed and unprocessed meat consumption but suppressed by fibre-rich foods

  • Dietary risk is mediated by the colonic microbiota; carbohydrate residues stimulate production of metabolites that maintain mucosal health, proteinaceous residues and fat-stimulated bile acids might result in pro-inflammatory and carcinogenic metabolites

  • A moderate intake of meat and fat is part of our omnivorous diet and the carcinogenic potential can be suppressed by the induction of butyrogenesis from fibre-rich foods

  • Current dietary fibre recommendations need to be reviewed as they are based on the maintenance of cardiovascular health and are below the levels associated with low colon cancer risk

Abstract

Colorectal cancer is one of the so-called westernized diseases and the second leading cause of cancer death worldwide. On the basis of global epidemiological and scientific studies, evidence suggests that the risk of colorectal cancer is increased by processed and unprocessed meat consumption but suppressed by fibre, and that food composition affects colonic health and cancer risk via its effects on colonic microbial metabolism. The gut microbiota can ferment complex dietary residues that are resistant to digestion by enteric enzymes. This process provides energy for the microbiota but culminates in the release of short-chain fatty acids including butyrate, which are utilized for the metabolic needs of the colon and the body. Butyrate has a remarkable array of colonic health-promoting and antineoplastic properties: it is the preferred energy source for colonocytes, it maintains mucosal integrity and it suppresses inflammation and carcinogenesis through effects on immunity, gene expression and epigenetic modulation. Protein residues and fat-stimulated bile acids are also metabolized by the microbiota to inflammatory and/or carcinogenic metabolites, which increase the risk of neoplastic progression. This Review will discuss the mechanisms behind these microbial metabolite effects, which could be modified by diet to achieve the objective of preventing colorectal cancer in Western societies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geographical variation in colorectal cancer rates.
Figure 2: Importance of dietary residues and the colonic microbiota in determining colon cancer risk.
Figure 3: Key metabolic pathways of the colonic microbiota.

References

  1. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [online]. Lyon, France: International Agency for Research on Cancer, http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=colorectal (2013).

    Google Scholar 

  2. Perdue, D. G., Haverkamp, D., Perkins, C., Daley, C. M. & Provost, E. Geographic variation in colorectal cancer incidence and mortality, age of onset, and stage at diagnosis among American Indian and Alaska Native people, 1990–2009. Am. J. Public Health 104, S404–S414 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Houlston, R. S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat. Genet. 42, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Figueiredo, J. C. et al. Genome-wide diet–gene interaction analyses for risk of colorectal cancer. PLoS Genet. 10, e1004228 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Aune, D. et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343, d6617 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Magalhães, B., Peleteiro, B. & Lunet, N. Dietary patterns and colorectal cancer: systematic review and meta-analysis. Eur. J. Cancer Prev. 21, 15–23 (2012).

    PubMed  Google Scholar 

  7. World Cancer Research Fund & American Institute for Cancer Research. Colorectal cancer 2011 report. Food, nutrition, physical activity, and the prevention of colorectal cancer. WCRFhttp://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf (2011).

  8. World Health Organization. IARC monographs evaluate consumption of red meat and processed meat. IARChttps://www.iarc.fr/en/media-centre/pr/2015/pdfs/pr240_E.pdf (2015).

  9. Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981).

    CAS  PubMed  Google Scholar 

  10. Blot, W. J. & Tarone, R. E. Doll and Peto's quantitative estimates of cancer risks: holding generally true for 35 years. J. Natl Cancer Inst. 107, djv044 (2015).

    PubMed  Google Scholar 

  11. Le Marchand, L. & Kolonel, L. N. Cancer in Japanese migrants to Hawaii: interaction between genes and environment [French]. Rev. Épidémiol. Santé Publique 40, 425–430 (1992).

    CAS  PubMed  Google Scholar 

  12. Nosho, K. et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol. 22, 557–566 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    CAS  PubMed  Google Scholar 

  14. Colnot, S. et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab. Invest. 84, 1619–1630 (2004).

    CAS  PubMed  Google Scholar 

  15. Bordonaro, M., Lazarova, D. L. & Sartorelli, A. C. Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle 7, 1178–1183 (2008).

    CAS  PubMed  Google Scholar 

  16. Beyer-Sehlmeyera, G. et al. Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. Br. J. Nutr. 90, 1057–1070 (2003).

    Google Scholar 

  17. Bultman, S. J. Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin. Cancer Res. 20, 799–803 (2014).

    CAS  PubMed  Google Scholar 

  18. Verma, M. Cancer control and prevention: nutrition and epigenetics. Curr. Opin. Clin. Nutr. Metab. Care 16, 376–384 (2013).

    CAS  PubMed  Google Scholar 

  19. Tarapore, R. S., Siddiqui, I. A. & Mukhtar, H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis 33, 483–491 (2012).

    CAS  PubMed  Google Scholar 

  20. Fung, K. Y., Cosgrove, L., Lockett, T., Head, R. & Topping, D. L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 108, 820–831 (2012).

    CAS  PubMed  Google Scholar 

  21. Matsuki, T. et al. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve. PLoS ONE 8, e63053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, Y. et al. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 37, 366–375 (2016).

    CAS  PubMed  Google Scholar 

  23. Cho, M., Carter, J., Harari, S. & Pei, Z. The interrelationships of the gut microbiome and inflammation in colorectal carcinogenesis. Clin. Lab. Med. 34, 699–710 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Greer, J. B. & O'Keefe, S. J. Microbial induction of immunity, inflammation and cancer. Front. Physiol. 1, 168 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Vipperla, K. & O'Keefe, S. J. Diet, microbiota, and dysbiosis: a 'recipe' for colorectal cancer. Food Funct. 7, 1731–1740 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4, e6026 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Borges-Canha, M., Portela-Cidade, J. P., Dinis Ribeiro, M., Leite-Moreira, A. F. & Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. Rev. Esp. Enferm. Dig. 107, 659–671 (2015).

    CAS  PubMed  Google Scholar 

  29. Baxter, N. T., Zackular, J. P., Chen, G. Y. & Schloss, P. D. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome 2, 20 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Tahara, T. et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 74, 1311–1318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Toprak, N. U. et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12, 782–786 (2006).

    CAS  PubMed  Google Scholar 

  37. DeStefano Shields, C. E. et al. Reduction of murine colon tumorigenesis driven by enterotoxigenic Bacteroides fragilis using cefoxitin treatment. J. Infect. Dis. 214, 122–129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Al-Asmakh, M. et al. The gut microbiota and developmental programming of the testis in mice. PLoS ONE 9, e103809 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheflin, A. M., Whitney, A. K. & Weir, T. L. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 16, 406 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Xuan, C. et al. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9, e83744 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rook, G. A. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the 'hygiene' or 'old friends' hypothesis. Clin. Exp. Immunol. 160, 70–79 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    CAS  PubMed  Google Scholar 

  46. Balter, V., Braga, J., Telouk, P. & Thackeray, J. F. Evidence for dietary change but not landscape use in South African early hominins. Nature 489, 558–560 (2012).

    CAS  PubMed  Google Scholar 

  47. Richardson, E. U. Archaeological dig reveals causes — and possible cures — for diabetes epidemic. Indian Country Today Media Network [online] http://indiancountrytodaymedianetwork.com/2012/08/23/archaeological-dig-reveals-causes-and-possible-cures-diabetes-epidemic-130651 (2012)

  48. Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011).

    CAS  PubMed  Google Scholar 

  49. O'Keefe, S. J. et al. Why do African Americans get more colon cancer than Native Africans? J. Nutr. 137, 175S–182S (2007).

    CAS  PubMed  Google Scholar 

  50. O'Keefe, S. J. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Macfarlane, G. T. & Englyst, H. N. Starch utilization by the human large intestinal microflora. J. Appl. Bacteriol. 60, 195–201 (1986).

    CAS  PubMed  Google Scholar 

  53. Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).

    CAS  PubMed  Google Scholar 

  54. Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A. & Englyst, H. N. Digestion and physiological properties of resistant starch in the human large bowel. Br. J. Nutr. 75, 733–747 (1996).

    CAS  PubMed  Google Scholar 

  55. Roediger, W. E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424–429 (1982).

    CAS  PubMed  Google Scholar 

  56. Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74, 13–22 (2015).

    CAS  PubMed  Google Scholar 

  57. Macfarlane, S. & Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    CAS  PubMed  Google Scholar 

  58. Macfarlane, G. T. & Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95, 50–60 (2012).

    CAS  PubMed  Google Scholar 

  59. Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).

    CAS  PubMed  Google Scholar 

  60. Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).

    CAS  PubMed  Google Scholar 

  61. Macfarlane, G. T. & Macfarlane, S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 45, S120–S127 (2011).

    CAS  PubMed  Google Scholar 

  62. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Al-Lahham, S. H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. J. & Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta 1801, 1175–1183 (2010).

    CAS  PubMed  Google Scholar 

  64. Venter, C. S., Vorster, H. H. & Cummings, J. H. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol. 85, 549–553 (1990).

    CAS  PubMed  Google Scholar 

  65. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    CAS  PubMed  Google Scholar 

  66. Nordgaard, I., Hansen, B. S. & Mortensen, P. B. Importance of colonic support for energy absorption as small-bowel failure proceeds. Am. J. Clin. Nutr. 64, 222–231 (1996).

    CAS  PubMed  Google Scholar 

  67. Silvester, K. R. & Cummings, J. H. Does digestibility of meat protein help explain large bowel cancer risk? Nutr. Cancer 24, 279–288 (1995).

    CAS  PubMed  Google Scholar 

  68. Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

    CAS  PubMed  Google Scholar 

  69. Bui, T. P. et al. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat. Commun. 6, 10062 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Visek, W. J. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr. 31, S216–S220 (1978).

    CAS  PubMed  Google Scholar 

  71. Clinton, S. K., Bostwick, D. G., Olson, L. M., Mangian, H. J. & Visek, W. J. Effects of ammonium acetate and sodium cholate on N-methyl-N′-nitro-N-nitrosoguanidine-induced colon carcinogenesis of rats. Cancer Res. 48, 3035–3039 (1988).

    CAS  PubMed  Google Scholar 

  72. Mirvish, S. S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93, 17–48 (1995).

    CAS  PubMed  Google Scholar 

  73. Cross, A. J. & Sinha, R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 44, 44–55 (2004).

    CAS  PubMed  Google Scholar 

  74. Bingham, S. A. et al. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17, 515–523 (1996).

    CAS  PubMed  Google Scholar 

  75. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 487, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9–14 (2006).

    CAS  PubMed  Google Scholar 

  77. Wallace, J. L., Vong, L., McKnight, W., Dicay, M. & Martin, G. R. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137, 569–578, (2009).

    CAS  PubMed  Google Scholar 

  78. Ianaro, A., Cirino, G. & Wallace, J. L. Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol. Res. 111, 652–658 (2016).

    CAS  PubMed  Google Scholar 

  79. Elsheikh, W., Blackler, R. W., Flannigan, K. L. & Wallace, J. L. Enhanced chemopreventive effects of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) in experimental colorectal cancer. Nitric Oxide 41, 131–137 (2014).

    CAS  PubMed  Google Scholar 

  80. De Preter, V. et al. Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis. Inflamm. Bowel Dis. 18, 2371–2380 (2012).

    PubMed  Google Scholar 

  81. McCall, I. C. et al. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol. Appl. Pharmacol. 241, 61–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Birkett, A., Muir, J., Phillips, J., Jones, G. & O'Dea, K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am. J. Clin. Nutr. 63, 766–772 (1996).

    CAS  PubMed  Google Scholar 

  83. De Preter, V. et al. The in vivo use of the stable isotope-labelled biomarkers lactose-[15N]ureide and [2H4]tyrosine to assess the effects of pro- and prebiotics on the intestinal flora of healthy human volunteers. Br. J. Nutr. 92, 439–446 (2004).

    CAS  PubMed  Google Scholar 

  84. Rafter, J. et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 85, 488–496 (2007).

    CAS  PubMed  Google Scholar 

  85. Humphreys, K. J. et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev. Res. (Phila.) 7, 786–795 (2014).

    CAS  Google Scholar 

  86. Hu, S., Liu, L., Chang, E. B., Wang, J. Y. & Raufman, J. P. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol. Cancer 14, 180 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Chen, H. M. et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 97, 1044–1052 (2013).

    CAS  PubMed  Google Scholar 

  88. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    CAS  PubMed  Google Scholar 

  89. Vipperla, K. & O'Keefe, S. J. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr. Clin. Pract. 27, 624–635 (2012).

    PubMed  Google Scholar 

  90. Rodriguez-Cabezas, M. E. et al. Dietary fiber down-regulates colonic tumor necrosis factor α and nitric oxide production in trinitrobenzenesulfonic acid-induced colitic rats. J. Nutr. 132, 3263–3271 (2002).

    CAS  PubMed  Google Scholar 

  91. Inan, M. S. et al. The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118, 724–734 (2000).

    CAS  PubMed  Google Scholar 

  92. Chirakkal, H. et al. Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene 25, 7192–7200 (2006).

    CAS  PubMed  Google Scholar 

  93. Hinnebusch, B. F., Meng, S., Wu, J. T., Archer, S. Y. & Hodin, R. A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132, 1012–1017 (2002).

    CAS  PubMed  Google Scholar 

  94. Comalada, M. et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J. Cancer Res. Clin. Oncol. 132, 487–497 (2006).

    CAS  PubMed  Google Scholar 

  95. Andoh, A., Shimada, M., Araki, Y., Fujiyama, Y. & Bamba, T. Sodium butyrate enhances complement-mediated cell injury via down-regulation of decay-accelerating factor expression in colonic cancer cells. Cancer Immunol. Immunother. 50, 663–672 (2002).

    CAS  PubMed  Google Scholar 

  96. Rodríguez-Salvador, J. et al. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines. J. Exp. Clin. Cancer Res. 24, 463–473 (2005).

    PubMed  Google Scholar 

  97. Zeng, H. & Briske-Anderson, M. Prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. J. Nutr. 135, 291–295 (2005).

    CAS  PubMed  Google Scholar 

  98. Zgouras, D., Wachtershauser, A., Frings, D. & Stein, J. Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1α nuclear translocation. Biochem. Biophys. Res. Commun. 300, 832–838 (2003).

    CAS  PubMed  Google Scholar 

  99. Willemsen, L. E., Koetsier, M. A., van Deventer, S. J. & van Tol, E. A. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. D'Argenio, G. et al. Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology 110, 1727–1734 (1996).

    CAS  PubMed  Google Scholar 

  101. Schauber, J. et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52, 735–741 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Malago, J. J., Koninkx, J. F., Tooten, P. C., van Liere, E. A. & van Dijk, J. E. Anti-inflammatory properties of heat shock protein 70 and butyrate on Salmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells. Clin. Exp. Immunol. 141, 62–71 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  104. Hu, S. et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 6, e16221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, C.-J., Li, R. W. & Elsasser, T. H. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells. Genet. Epigenet. 3, 23–32 (2010).

    CAS  Google Scholar 

  107. Humphreys, K. J., Cobiac, L., Le Leu, R. K., Van der Hoek, M. B. & Michael, M. Z. Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol. Carcinog. 52, 459–474 (2013).

    CAS  PubMed  Google Scholar 

  108. Sengupta, S., Muir, J. G. & Gibson, P. R. Does butyrate protect from colorectal cancer? J. Gastroenterol. Hepatol. 21, 209–218 (2006).

    CAS  PubMed  Google Scholar 

  109. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    CAS  PubMed  Google Scholar 

  112. Ye, H., Liu, J., Feng, P., Zhu, W. & Mao, S. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Sci. Rep. 6, 20329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gressley, T. F., Hall, M. B. & Armentano, L. E. Ruminant Nutrition Symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants. J. Anim. Sci. 89, 1120–1130 (2011).

    CAS  PubMed  Google Scholar 

  114. Kowlgi, N. G. & Chhabra, L. D-lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 476215 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Winter, J. et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev. Res. (Phila.) 4, 1920–1928 (2011).

    CAS  Google Scholar 

  116. Toden, S., Bird, A. R., Topping, D. L. & Conlon, M. A. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol. Ther. 5, 267–272 (2006).

    CAS  PubMed  Google Scholar 

  117. Toden, S., Bird, A. R., Topping, D. L. & Conlon, M. A. Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br. J. Nutr. 97, 535–543 (2007).

    CAS  PubMed  Google Scholar 

  118. Hylla, S. et al. Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am. J. Clin. Nutr. 67, 136–142 (1998).

    CAS  PubMed  Google Scholar 

  119. van Munster, I. P., Tangerman, A. & Nagengast, F. M. Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Dig. Dis. Sci. 39, 834–842 (1994).

    CAS  PubMed  Google Scholar 

  120. Scharlau, D. et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 682, 39–53 (2009).

    CAS  PubMed  Google Scholar 

  121. Cardona, F., Andres-Lacueva, C., Tulipani, S., Tinahones, F. J. & Queipo-Ortuno, M. I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24, 1415–1422 (2013).

    CAS  PubMed  Google Scholar 

  122. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    CAS  PubMed  Google Scholar 

  123. Dueñas, M. et al. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015, 850902 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Kemperman, R. A., Bolca, S., Roger, L. C. & Vaughan, E. E. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology 156, 3224–3231 (2010).

    CAS  PubMed  Google Scholar 

  125. Sirk, T. W., Friedman, M. & Brown, E. F. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. J. Agric. Food Chem. 59, 3780–3787 (2011).

    CAS  PubMed  Google Scholar 

  126. Martin, C., Zhang, Y., Tonelli, C. & Petroni, K. Plants, diet, and health. Annu. Rev. Plant Biol. 64, 19–46 (2013).

    CAS  PubMed  Google Scholar 

  127. Eid, N. et al. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br. J. Nutr. 114, 1226–1236 (2015).

    CAS  PubMed  Google Scholar 

  128. Nuñez-Sánchez, M. A. et al. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: a new potentiality for ellagitannin metabolites against cancer. Food Chem. Toxicol. 92, 8–16 (2016).

    PubMed  Google Scholar 

  129. Giménez-Bastida, J. A. et al. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. J. Agric. Food Chem. 60, 8866–8876 (2012).

    PubMed  Google Scholar 

  130. González-Sarrías, A., Nuñez-Sánchez, M. A., García-Villalba, R., Tomás-Barberán, F. A. & Espín, J. C. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. Eur. J. Nutr. http://dx.doi.org/10.1007/s00394-015-1131-7 (2015).

  131. Wang, L. S. et al. A phase Ib study of the effects of black raspberries on rectal polyps in patients with familial adenomatous polyposis. Cancer Prev. Res. (Phila.) 7, 666–674 (2014).

    Google Scholar 

  132. Stoner, G. D. et al. Cancer prevention with freeze-dried berries and berry components. Semin. Cancer Biol. 17, 403–410 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Queipo-Ortuno, M. I. et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95, 1323–1334 (2012).

    CAS  PubMed  Google Scholar 

  134. Yamada, H. et al. Coffee consumption and risk of colorectal cancer: the Japan Collaborative Cohort Study. J. Epidemiol. 24, 370–378 (2014).

    PubMed  Google Scholar 

  135. Guercio, B. J. et al. Coffee intake, recurrence, and mortality in stage III colon cancer: results from CALGB 89803 (Alliance). J. Clin. Oncol. 33, 3598–3607 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Wang, Z. J. et al. Dietary polyphenols and colorectal cancer risk: the Fukuoka colorectal cancer study. World J. Gastroenterol. 19, 2683–2690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmit, S. L., Rennert, H. S., Rennert, G. & Gruber, S. B. Coffee consumption and the risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 25, 634–639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Guertin, K. A. et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am. J. Clin. Nutr. 101, 1000–1011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Willett, W. C., Stampfer, M. J., Colditz, G. A., Rosner, B. A. & Speizer, F. E. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med. 323, 1664–1672 (1990).

    CAS  PubMed  Google Scholar 

  140. Kato, I., Majumdar, A. P., Land, S. J., Barnholtz-Sloan, J. S. & Severson, R. K. Dietary fatty acids, luminal modifiers, and risk of colorectal cancer. Int. J. Cancer 127, 942–951 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Enos, R. T. et al. High-fat diets rich in dietary saturated fat protect against azoxymethane/dextran sulfate sodium induced colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G906–G919 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Hodge, A. M. et al. Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int. J. Cancer 137, 1224–1234 (2015).

    CAS  PubMed  Google Scholar 

  143. Viggiano, E. et al. Effects of an high-fat diet enriched in lard or in fish oil on the hypothalamic amp-activated protein kinase and inflammatory mediators. Front. Cell. Neurosci. 10, 150 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wells, J. E. & Hylemon, P. B. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl. Environ. Microbiol. 66, 1107–1113 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bernstein, C. et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch. Toxicol. 85, 863–871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Burnat, G., Majka, J. & Konturek, P. C. Bile acids are multifunctional modulators of the Barrett's carcinogenesis. J. Physiol. Pharmacol. 61, 185–192 (2010).

    CAS  PubMed  Google Scholar 

  149. Sharma, V., Chauhan, V. S., Nath, G., Kumar, A. & Shukla, V. K. Role of bile bacteria in gallbladder carcinoma. Hepatogastroenterology 54, 1622–1625 (2007).

    CAS  PubMed  Google Scholar 

  150. Alberts, D. S. et al. Randomized, double-blinded, placebo-controlled study of effect of wheat bran fiber and calcium on fecal bile acids in patients with resected adenomatous colon polyps. J. Natl Cancer Inst. 88, 81–92 (1996).

    CAS  PubMed  Google Scholar 

  151. De Boever, P. et al. Protective effect of the bile salt hydrolase-active Lactobacillus reuteri against bile salt cytotoxicity. Appl. Microbiol. Biotechnol. 53, 709–714 (2000).

    CAS  PubMed  Google Scholar 

  152. Taira, T. et al. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J. Clin. Biochem. Nutr. 57, 212–216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Higashimura, Y. et al. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G367–G375 (2016).

    PubMed  Google Scholar 

  154. Reddy, B. S., Simi, B., Patel, N., Aliaga, C. & Rao, C. V. Effect of amount and types of dietary fat on intestinal bacterial 7 α-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion. Cancer Res. 56, 2314–2320 (1996).

    CAS  PubMed  Google Scholar 

  155. Bersamin, A., Luick, B. R., King, I. B., Stern, J. S. & Zidenberg-Cherr, S. Westernizing diets influence fat intake, red blood cell fatty acid composition, and health in remote Alaskan Native communities in the Center for Alaska Native Health Study. J. Am. Diet. Assoc. 108, 266–273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Simopoulos, A. P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60, 502–507 (2006).

    CAS  PubMed  Google Scholar 

  157. Kim, S., Sandler, D. P., Galanko, J., Martin, C. & Sandler, R. S. Intake of polyunsaturated fatty acids and distal large bowel cancer risk in whites and African Americans. Am. J. Epidemiol. 171, 969–979 (2010).

    PubMed  PubMed Central  Google Scholar 

  158. Woodworth, H. L. et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res. 70, 7960–7969 (2010).

    CAS  PubMed  Google Scholar 

  159. Moreira, A. P. B. et al. Fish oil ingestion reduces the number of aberrant crypt foci and adenoma in 1,2-dimethylhydrazine-induced colon cancer in rats. Braz. J. Med. Biol. Res. 42, 1167–1172 (2009).

    CAS  PubMed  Google Scholar 

  160. Young, T. K., Kelly, J. J., Friborg, J., Soininen, L. & Wong, K. O. Cancer among circumpolar populations: an emerging public health concern. Int. J. Circumpolar Health 75, 29787 (2016).

    PubMed  Google Scholar 

  161. Hofmanová, J., Vaculová, A., Lojek, A. & Kozubík, A. Interaction of polyunsaturated fatty acids and sodium butyrate during apoptosis in HT-29 human colon adenocarcinoma cells. Eur. J. Nutr. 44, 40–51 (2005).

    PubMed  Google Scholar 

  162. Kolar, S. S. N. et al. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca2+ accumulation in colonocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G935–G943 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief https://www.cdc.gov/nchs/data/databriefs/db131.pdf (2013).

  164. Pischon, T., Nöthlings, U. & Boeing, H. Obesity and cancer. Proc. Nutr. Soc. 67, 128–145 (2008).

    PubMed  Google Scholar 

  165. Goday, A. et al. Obesity as a risk factor in cancer: a national consensus of the Spanish Society for the Study of Obesity and the Spanish Society of Medical Oncology. Clin. Transl Oncol. 17, 763–771 (2015).

    CAS  PubMed  Google Scholar 

  166. Bell, D. S. Changes seen in gut bacteria content and distribution with obesity: causation or association? Postgrad. Med. 127, 863–868 (2015).

    PubMed  Google Scholar 

  167. Turnbaugh, P. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  168. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2009).

    PubMed  Google Scholar 

  169. John, G. K. & Mullin, G. E. The gut microbiome and obesity. Curr. Oncol. Rep. 18, 45 (2016).

    PubMed  Google Scholar 

  170. Ou, J. et al. Sa1465 Obesity and colon cancer risk: is it the fat? Gastroenterology 142, S-313 (2012).

    Google Scholar 

  171. Asano, T. K. & McLeod, R. S. Dietary fibre for the prevention of colorectal adenomas and carcinomas. Cochrane Database Syst. Rev. 2, CD003430 (2002).

    Google Scholar 

  172. Schatzkin, A. et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. N. Engl. J. Med. 342, 1149–1155 (2000).

    CAS  PubMed  Google Scholar 

  173. Burkitt, D. P. Diseases of the alimentary tract and western diets. Pathol. Microbiol. (Basel) 39, 177–186 (1971).

    Google Scholar 

  174. Lanza, E. et al. High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial. J. Nutr. 136, 1896–1903 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Slavin, J. L. Position of the American Dietetic Association: health implications of dietary fiber. J. Am. Diet Assoc. 108, 1716–1731 (2008).

    PubMed  Google Scholar 

  176. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. http://health.gov/dietaryguidelines/2015/guidelines/ (2015)

  177. Scientific Advisory Committee on Nutrition. SACN Carbohydrates and Health Report. https://www.gov.uk/government/publications/sacn-carbohydrates-and-health-report (2015)

  178. Australian National Health and Medical Research Council and the New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. https://www.nrv.gov.au/nutrients/dietary-fibre (2006)

  179. EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA Journal 8, 1462 (2010).

  180. O'Keefe, S. J. The colon as a metabolic organ. S. Afr. Med. J. 84, 376–377 (1994).

    CAS  PubMed  Google Scholar 

  181. O'Keefe, S. J. A.R.P. Walker Lecture. Food and the gut. S. Afr. Med. J. 85, 261–268 (1995).

    CAS  PubMed  Google Scholar 

  182. O'Keefe, S. J. The African way of life and colon cancer risk. Am. J. Gastroenterol. 96, 3220–3221 (2001).

    CAS  PubMed  Google Scholar 

  183. O'Keefe, S. J. Nutrition and colonic health: the critical role of the microbiota. Curr. Opin. Gastroenterol. 24, 51–58 (2008).

    PubMed  Google Scholar 

  184. O'Keefe, S. J., Kidd, M., Espitalier-Noel, G. & Owira, P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am. J. Gastroenterol. 94, 1373–1380 (1999).

    CAS  PubMed  Google Scholar 

  185. O'Keefe, S. J. et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J. Nutr. 139, 2044–2048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Park, H. et al. A high-fat diet increases angiogenesis, solid tumor growth, and lung metastasis of CT26 colon cancer cells in obesity-resistant BALB/c mice. Mol. Carcinog. 51, 869–880 (2012).

    CAS  PubMed  Google Scholar 

  187. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. D. O'Keefe.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Keefe, S. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13, 691–706 (2016). https://doi.org/10.1038/nrgastro.2016.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing