Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution and development of shape: integrating quantitative approaches

Key Points

  • Quantitative approaches are used increasingly in evolutionary developmental biology ('evo-devo').

  • In particular, geometric morphometrics is widely used to quantify the shape of organisms or their parts. A wide range of tools is available to address specific questions and interpret results in their anatomical context.

  • Genetic studies of shape variation have shown that inheritance tends to be polygenic, with many loci of mostly small effects. Because developmental processes integrate variation from diverse sources, interactions of genes with each other and with environmental factors seem to be important.

  • Shape variation tends to be integrated and often has a modular structure; there is usually strong integration within morphological modules but relatively weak integration among modules.

  • Strong integration can act as an evolutionary constraint by hindering the independent evolution of different traits. Identifying constraints and their evolutionary effects is an active area of current research.

  • Functional considerations are increasingly important in evo-devo and provide explicit links between the genetic and developmental basis of variation and its adaptive significance for evolving populations.

  • Large-scale comparative analyses of shape with an explicit phylogenetic basis provide a means of examining the long-term evolutionary consequences of the processes observed in contemporary populations.

  • Overall, integration of quantitative approaches into evo-devo promises to unify developmental and adaptive factors of morphological evolution.

Abstract

Morphological traits have long been a focus of evolutionary developmental biology ('evo-devo'), but new methods for quantifying shape variation are opening unprecedented possibilities for investigating the developmental basis of evolutionary change. Morphometric analyses are revealing that development mediates complex interactions between genetic and environmental factors affecting shape. Evolution results from changes in those interactions, as natural selection favours shapes that more effectively perform some fitness-related functions. Quantitative studies of shape can characterize developmental and genetic effects and discover their relative importance. They integrate evo-devo and related disciplines into a coherent understanding of evolutionary processes from populations to large-scale evolutionary radiations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative and absolute constraints.

Similar content being viewed by others

References

  1. Raff, R. A. The shape of Life: Genes, Development and the Evolution of Animal Form (Univ. of Chicago Press, Chicago, 1996).

    Book  Google Scholar 

  2. Amundson, R. The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  3. Minelli, A. The Development of Animal Form: Ontogeny, Morphology and evolution (Cambridge Univ. Press, 2003).

    Book  Google Scholar 

  4. Klingenberg, C. P. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 287, 3–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, M. et al. Regulatory genes control a key morphological and ecological trait transferred between species. Science 322, 1116–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Gómez, J. M., Perfectti, F. & Camacho, J. P. M. Natural selection on Erysimum mediohispanicum flower shape: insights into the evolution of zygomorphy. Am. Nat. 168, 531–545 (2006). This paper pioneered the estimation of natural selection on shape using geometric morphometrics.

    Article  PubMed  Google Scholar 

  7. Beldade, P., Koops, K. & Brakefield, P. M. Developmental constraints versus flexibility in morphological evolution. Nature 416, 844–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Young, N. M., Wagner, G. P. & Hallgrímsson, B. Development and the evolvability of human limbs. Proc. Natl Acad. Sci. USA 107, 3400–3405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dryden, I. L. & Mardia, K. V. Statistical Shape Analysis (Wiley, Chichester, 1998). An outstanding mathematical treatment of shape statistics. Although written for a mathematical readership, this book is very clear and an invaluable reference.

    Google Scholar 

  10. Renaud, S., Auffray, J.-C. & de la Porte, S. Epigenetic effects on the mouse mandible: common features and discrepancies in remodeling due to muscular dystrophy and response to food consistency. BMC Evol. Biol. 10, 28 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Langlade, N. B. et al. Evolution through genetically controlled allometry space. Proc. Natl Acad. Sci. USA 102, 10221–10226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McPeek, M. A., Shen, L., Torrey, J. Z. & Farid, H. The tempo and mode of three-dimensional morphological evolution in male reproductive structure. Am. Nat. 171, E158–E178 (2008).

    Article  PubMed  Google Scholar 

  13. Gunz, P., Mitteroecker, P. & Bookstein, F. L. in Modern Morphometrics in Physical Anthropology (ed. Slice, D. E.) 73–98 (Kluwer Academic/Plenum, New York, 2005).

    Book  Google Scholar 

  14. Perez, S. I., Bernal, V. & Gonzalez, P. N. Differences between sliding semi-landmark methods in geometric morohometrics, with an application to human craniofacial variation. J. Anat. 208, 769–784 (2006).

    Article  PubMed  Google Scholar 

  15. Klingenberg, C. P. Novelty and 'homology-free' morphometrics: what's in a name? Evol. Biol. 35, 186–190 (2008).

    Article  Google Scholar 

  16. Klingenberg, C. P. & Monteiro, L. R. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst. Biol. 54, 678–688 (2005).

    Article  PubMed  Google Scholar 

  17. Drake, A. G. & Klingenberg, C. P. Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am. Nat. 175, 289–301 (2010).

    Article  PubMed  Google Scholar 

  18. Weinberg, S. M., Andreasen, N. C. & Nopoulos, P. Three-dimensional morphometric analysis of brain shape in nonsyndromic orofacial clefting. J. Anat. 214, 926–936 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Monteiro, L. R. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst. Biol. 48, 192–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Drake, A. G. & Klingenberg, C. P. The pace of morphological change: historical transformation of skull shape in St. Bernard dogs. Proc. R. Soc. Lond. B 275, 71–76 (2008).

    Article  Google Scholar 

  21. Laffont, R., Renvoisé, E., Navarro, N., Alibert, P. & Montuire, S. Morphological modularity and assessment of developmental processes within the vole dental row (Microtus arvalis, Arvicolinae, Rodentia). Evol. Dev. 11, 302–311 (2009).

    Article  PubMed  Google Scholar 

  22. Bruner, E., Martin-Loeches, M. & Colom, R. Human midsagittal brain shape variation: patterns, allometry and integration. J. Anat. 216, 589–599 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  24. Klingenberg, C. P. & Leamy, L. J. Quantitative genetics of geometric shape in the mouse mandible. Evolution 55, 2342–2352 (2001). A first application of the multivariate theory of evolutionary quantitative genetics to geometric morphometric data.

    Article  CAS  PubMed  Google Scholar 

  25. Gómez, J. M., Abdelaziz, M., Muñoz-Pajares, J. & Perfectti, F. Heritability and genetic correlation of corolla shape and size in Erysimum mediohispanicum. Evolution 63, 1820–1831 (2009).

    Article  PubMed  Google Scholar 

  26. Mezey, J. G. & Houle, D. The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution 59, 1027–1038 (2005).

    Article  PubMed  Google Scholar 

  27. Klingenberg, C. P., Debat, V. & Roff, D. A. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution 10 May 2010 (doi: 10.1111/j.1558-5646.2010.01030.x).

  28. Myers, E. M., Janzen, F. J., Adams, D. C. & Tucker, J. K. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta). Evolution 60, 563–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-Abadías, N., Paschetta, C., de Azevedo, S., Esparza, M. & González-José, R. Developmental and genetic constraints on neurocranial globularity: insights from analyses of deformed skulls and quantitative genetics. Evol. Biol. 36, 37–56 (2009).

    Article  Google Scholar 

  30. Walsh, B. & Blows, M. W. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).

    Article  Google Scholar 

  31. Liu, J. et al. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142, 1129–1145 (1996). A paper that broke new ground by mapping QTLs for shape differences between genitalia of two Drosophila species.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Burgio, G., Baylac, M., Heyer, E. & Montagutelli, X. Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species. Evolution 63, 2668–2686 (2009).

    Article  PubMed  Google Scholar 

  33. Albert, A. Y. K. et al. The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. Evolution 62, 76–85 (2008).

    PubMed  Google Scholar 

  34. Feng, X. et al. Evolution of allometry in Antirrhinum. Plant Cell 21, 2999–3007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klingenberg, C. P., Leamy, L. J., Routman, E. J. & Cheverud, J. M. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157, 785–802 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Workman, M. S., Leamy, L. J., Routman, E. J. & Cheverud, J. M. Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics 160, 1573–1586 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Klingenberg, C. P., Leamy, L. J. & Cheverud, J. M. Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166, 1909–1921 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mezey, J. G., Houle, D. & Nuzhdin, S. V. Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster. Genetics 169, 2101–2113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Debat, V., Debelle, A. & Dworkin, I. Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature. Evolution 63, 2864–2876 (2009).

    Article  PubMed  Google Scholar 

  40. Bensmihen, S. et al. Mutational spaces for leaf shape and size. HFSP J. 2, 110–120 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009). A broad overview on a number of topics concerning morphological integration and its developmental basis.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dworkin, I. & Gibson, G. Epidermal growth factor receptor and transforming growth factor-β signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173, 1417–1431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weber, K., Johnson, N., Champlin, D. & Patty, A. Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 169, 1461–1475 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breuker, C. J., Patterson, J. S. & Klingenberg, C. P. A single basis for developmental buffering of Drosophila wing shape. PLoS ONE 1, e7 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klingenberg, C. P. & Nijhout, H. F. Genetics of fluctuating asymmetry: a developmental model of developmental instability. Evolution 53, 358–375 (1999).

    Article  PubMed  Google Scholar 

  46. Siegal, M. L. & Bergman, A. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl Acad. Sci. USA 99, 10528–10532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Müller, G. B. & Olsson, L. in Keywords and Concepts in Evolutionary Developmental Biology (eds Hall, B. K. & Olson, W. M.) 114–123 (Harvard Univ. Press, Cambridge, Massachusetts, 2003).

    Google Scholar 

  48. Young, R. L. & Badyaev, A. V. Evolution of ontogeny: linking epigenetic remodeling and genetic adaptation in skeletal structures. Integr. Comp. Biol. 47, 234–244 (2007).

    Article  PubMed  Google Scholar 

  49. Jamniczky, H. A. et al. Rediscovering Waddington in the post-genomic age. BioEssays 32, 553–558 (2010).

    Article  PubMed  Google Scholar 

  50. Hallgrímsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F. & Jirik, F. R. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol. Dev. 9, 76–91 (2007).

    Article  PubMed  Google Scholar 

  51. Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).

    Article  Google Scholar 

  52. Richtsmeier, J. T. & DeLeon, V. B. Morphological integration of the skull in craniofacial anomalies. Orthod. Craniofac. Res. 12, 149–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert, S. F. & Epel, D. Ecological Developmental Biology (Sinauer Associates, Sunderland, Massachusetts, 2008).

    Google Scholar 

  54. West-Eberhard, M. J. Developmental Plasticity and Evolution. (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  55. Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the 'flexible stem' model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).

    Article  PubMed  Google Scholar 

  56. Debat, V. & David, P. Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol. Evol. 16, 555–561 (2001).

    Article  Google Scholar 

  57. Milton, C. C., Huynh, B., Batterham, P., Rutherford, S. L. & Hoffmann, A. A. Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc. Natl Acad. Sci. USA 100, 13396–13401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P. & Hoffmann, A. A. Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution 60, 2529–2538 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet. 4, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Monteiro, L. R. & Nogueira, M. R. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution 64, 724–744 (2010). A thorough morphometric analysis of adaptation and evolutionary integration in the mandible across the spectacular diversification of a family of bats.

    Article  PubMed  Google Scholar 

  61. Monteiro, L. R., Bonato, V. & dos Reis, S. F. Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evol. Dev. 7, 429–439 (2005).

    Article  PubMed  Google Scholar 

  62. Klingenberg, C. P. Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a-priori hypotheses. Evol. Dev. 11, 405–421 (2009). A paper describing existing and new methods for analysing integration and modularity in landmark data.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Klingenberg, C. P., Mebus, K. & Auffray, J.-C. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5, 522–531 (2003).

    Article  PubMed  Google Scholar 

  64. Goswami, A. Cranial modularity shifts during mammalian evolution. Am. Nat. 168, 270–280 (2006).

    Article  PubMed  Google Scholar 

  65. Ivanovic´, A. & Kalezic´, M. L. Testing the hypothesis of morphological integration on a skull of a vertebrate with a biphasic life cycle: a case study of the alpine newt. J. Exp. Zool. 26 May 2010 (doi: 10.1002/jez.b.21358).

    Article  Google Scholar 

  66. Márquez, E. J. A statistical framework for testing modularity in multidimensional data. Evolution 62, 2688–2708 (2008).

    Article  PubMed  Google Scholar 

  67. Mitteroecker, P. & Bookstein, F. L. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 56, 818–836 (2007).

    Article  PubMed  Google Scholar 

  68. Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrímsson, B. & Hall, B. K.) 219–247 (Elsevier, Burlington, Massachusetts, 2005).

    Book  Google Scholar 

  69. Debat, V., Alibert, P., David, P., Paradis, E. & Auffray, J.-C. Independence between developmental stability and canalization in the skull of the house mouse. Proc. R. Soc. Lond. B 267, 423–430 (2000).

    Article  CAS  Google Scholar 

  70. Young, R. L. & Badyaev, A. V. Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution 60, 1291–1299 (2006).

    Article  PubMed  Google Scholar 

  71. Zelditch, M. L., Wood, A. R., Bonett, R. M. & Swiderski, D. L. Modularity of the rodent mandible: integrating bones, muscles, and teeth. Evol. Dev. 10, 756–768 (2008).

    Article  PubMed  Google Scholar 

  72. Willmore, K. E., Klingenberg, C. P. & Hallgrímsson, B. The relationship between fluctuating asymmetry and environmental variance in rhesus macaque skulls. Evolution 59, 898–909 (2005).

    Article  PubMed  Google Scholar 

  73. Felsenstein, J. Inferring Phylogenies (Sinauer Associates, Sunderland, Massachusetts, 2004).

    Google Scholar 

  74. Rohlf, F. J. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143–2160 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008). An innovative application of explicit mapping of shape data onto phylogenetic trees.

    Article  PubMed  Google Scholar 

  77. Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).

    Article  PubMed  Google Scholar 

  78. Allen, C. E., Beldade, P., Zwaan, B. J. & Brakefield, P. M. Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol. Biol. 8, 94 (2008). An exemplary study using artificial selection to explore constraints on the evolution of morphological traits. The paper also discusses the possible developmental basis of the constraints.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article  PubMed  Google Scholar 

  80. Goswami, A. & Polly, P. D. The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE 5, e9517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klingenberg, C. P. in Advances in Morphometrics. (eds Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P. & Slice, D. E.) 23–49 (Plenum, New York, 1996).

    Book  Google Scholar 

  82. Shingleton, A. W., Mirth, C. K. & Bates, P. W. Developmental model of static allometry in holometabolous insects. Proc. R. Soc. Lond. B 275, 1875–1885 (2008).

    Article  Google Scholar 

  83. Kimmel, C. B., DeLaurier, A., Ullmann, B., Dowd, J. & McFadden, M. Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS ONE 5, e9475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cardini, A. & Elton, S. Variation in guenon skulls (II): sexual dimorphism. J. Hum. Evol. 54, 638–647 (2008).

    Article  PubMed  Google Scholar 

  85. Gidaszewski, N. A., Baylac, M. & Klingenberg, C. P. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evol. Biol. 9, 110 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wilson, L. A. B. & Sánchez-Villagra, M. R. Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proc. R. Soc. Lond. B 277, 1227–1234 (2010).

    Article  Google Scholar 

  87. Gerber, S., Eble, G. J. & Neige, P. Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62, 1450–1457 (2008). An important study of the evolution of allometry on a large evolutionary scale.

    Article  PubMed  Google Scholar 

  88. Breuker, C. J., Debat, V. & Klingenberg, C. P. Functional evo-devo. Trends Ecol. Evol. 21, 488–492 (2006).

    Article  PubMed  Google Scholar 

  89. Albertson, R. C., Streelman, J. T., Kocher, T. D. & Yelick, P. C. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proc. Natl Acad. Sci. USA 102, 16287–16292 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Armbruster, W. S., Pélabon, C., Hansen, T. F. & Mulder, C. P. H. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 23–49 (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  91. Salazar-Ciudad, I. & Jernvall, J. A computational model of teeth and the developmental origins of morphological variation. Nature 464, 583–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Panagiotopoulou, O. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Ann. Hum. Biol. 36, 609–623 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Kupczik, K. et al. Masticatory loading and bone adaptation in the supraorbital torus of developing macaques. Am. J. Phys. Anthropol. 139, 193–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Gómez, J. M. et al. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proc. R. Soc. Lond. B 275, 2241–2249 (2008).

    Article  Google Scholar 

  95. Marcus, L. F., Hingst-Zaher, E. & Zaher, H. Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11, 27–47 (2000).

    Google Scholar 

  96. Cooper, W. J. et al. Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African rift-lakes. PLoS ONE 5, e9551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wroe, S. & Milne, N. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61, 1251–1260 (2007).

    Article  PubMed  Google Scholar 

  98. Parsons, K. J. & Albertson, R. C. Roles for Bmp4 and CaM1 in shaping the jaw: evo-devo and beyond. Annu. Rev. Genet. 43, 369–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Jenner, R. A. & Wills, M. A. The choice of model organisms in evo-devo. Nature Rev. Genet. 8, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Helms, J. A. & Brugmann, S. A. The origins of species-specific facial morphology: the proof is in the pigeon. Integr. Comp. Biol. 47, 338–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Kenney-Hunt, J. P. & Cheverud, J. M. Differential dominance of pleiotropic loci for mouse skeletal traits. Evolution 63, 1845–1851 (2009).

    Article  PubMed  Google Scholar 

  102. Ehrich, T. H. et al. Pleiotropic effects on mandibular morphology, I. Developmental morphological integration and differential dominance. J. Exp. Zool. 296B, 258–279 (2003).

    Article  Google Scholar 

  103. Klingenberg, C. P. in Developmental Instability: Causes and Consequences (ed. Polak, M.) 14–34 (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  104. Astúa, D. Evolution of scapular size and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution 63, 2438–2456 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. M. Gómez, A. Drake, B. Sidlauskas and M. Sabaj Perez for providing the images in Box 1, and C. Allen and B. Sidlauskas for providing the graphs in Figure 1 and Box 6, respectively. I greatly appreciate the thoughtful comments of three anonymous referees on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Christian Peter Klingenberg's homepage

Morphometrics at SUNY Stony Brook (includes announcements of meetings and courses, software, a bibliography and a list of researchers)

Morphometrics.org (includes access to the MORPHMET community mailing list)

Glossary

Shape

The shape of an object encompasses all of its geometric properties except its size, position and orientation.

Morphological integration

The covariation of morphological structures in an organism or of parts in a structure, which may reflect developmental or functional interactions among traits.

Allometry

The dependence of shape on size, often characterized by a regression of shape on size.

Vital staining

Staining of live organisms to follow developmental processes (for example, calcium-binding stains, such as Alizarin Red and Calcein, label bone tissue and, if administered at different times, can indicate bone growth).

Shape space

A special type of morphospace in which each point represents a shape and the distances between points correspond to the amount of shape change between the respective shapes.

Principal component analysis

A multivariate analysis that provides a new coordinate system whose axes, the principal components, successively account for the maximum amount of variance and are uncorrelated with each other.

Canonical variate analysis

A multivariate analysis that finds new shape variables that maximize the separation between groups (such as species or genotypes) relative to the variation within groups.

Multivariate regression

A type of analysis in which variation in one set of variables, the dependent variables, is predicted or explained by variation in one or more other variables, the independent variables.

Partial least squares analysis

A multivariate analysis that aims to find the optimal variables for showing patterns of covariation (for example, in studies of integration). The analysis looks for new variables that maximize covariation between two sets of variables (for example, between the shapes of two anatomical structures).

Constraint

The tendency for evolutionary change to occur in some directions of a morphospace more than in other directions.

Quantitative trait loci

Genes or small genomic regions that affect a phenotypic trait of interest.

Fluctuating asymmetry

Subtle deviations between paired structures on the left and right body sides due to random perturbations of developmental processes.

Modules

Parts of biological systems tend to be organized into clusters, or modules, which consist of parts that are integrated tightly by many or strong interactions and which are relatively independent from other modules because there are fewer or weaker interactions between them.

Squared-change parsimony

A method for inferring ancestral phenotypic values in a phylogeny by minimizing the sum of squared phenotypic changes over all branches of the phylogeny.

Independent contrasts

A method that addresses the interdependence in comparative data due to shared ancestry among species by focusing on differences between contrasts of phenotypic values between sister nodes in a phylogeny.

Morphospace

A multidimensional space in which forms of organisms are represented by points, and distances between points correspond to the morphological similarity between forms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingenberg, C. Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11, 623–635 (2010). https://doi.org/10.1038/nrg2829

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing