Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of epidemic influenza

Key Points

  • Phylogenetic analysis of newly available complete genome sequences of human influenza A virus reveals that multiple viral lineages frequently co-circulate within single geographical localities. This is in contrast to previous studies of the HA1 (haemagglutinin) domain in isolation, which depicted a single dominant and selectively favoured lineage.

  • Genome sequence data has also shown that reassortment, involving all segments of the influenza virus genome, is a frequent process and might also facilitate major antigenic changes. However, the role (if any) of homologous RNA recombination in generating genetic diversity is still unclear.

  • Natural selection on the HA protein seems to operate in a punctuated manner, causing distinct but irregular episodes of phenotypic change that are manifested as antigenic 'cluster jumps'. However, the fitness effects of the other viral proteins, and how they interact epistatically, is currently unclear.

  • Overall rates of evolutionary change (nucleotide substitution) in influenza A virus are similar in all species that have been studied, from mammals to birds. Furthermore, although rates of non-synonymous (amino-acid) substitution vary more extensively among species, there is little evidence that influenza viruses in wild aquatic birds, which are the main reservoir, have reached an 'evolutionary stasis'.

  • The factors that determine the strong winter seasonality of influenza virus are still unclear. However, it is likely that tropical regions constitute an important reservoir for year-long viral transmission, and that human movement (including workflow) among areas of high population density has a key role in determining epidemic patterns.

  • In the future, it will be necessary to take a synergistic approach to the study of influenza virus epidemiology and evolution, combining genomic, phenotypic (antigenic) and epidemiological data. Major gaps in current genome sequence data include virus samples from tropical regions, from transmission chains, and from within individual hosts.

Abstract

Recent developments in complete-genome sequencing, antigenic mapping and epidemiological modelling are greatly improving our knowledge of the evolution of human influenza virus at the epidemiological scale. In particular, recent studies have revealed a more complex relationship between antigenic evolution, natural selection and reassortment than previously realized. Despite these advances, there is much that remains to be understood about the epidemiology of influenza virus, particularly the processes that determine the virus's strong seasonality. We argue that a complete understanding of the evolutionary biology of this important human pathogen will require a genomic view of genetic diversity, including the acquisition of polymorphism data from within individual hosts and from geographical regions, particularly the tropics, which have been poorly surveyed to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The periodicity of pneumonia and influenza mortality and excess mortality rates.
Figure 2: The structure of influenza A virus.
Figure 3: Phylogenetic relationships of concatenated internal proteins.
Figure 4: A model for the genome-wide evolution of human influenza A/H3N2 virus.
Figure 5: The seasonality of influenza virus.

Similar content being viewed by others

References

  1. Thompson, W. W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003).

    Article  PubMed  Google Scholar 

  2. Taubenberger, J. K., Reid, A. H., Janczewksi, T. A. & Fanning, T. G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 1857–1859 (2001).

    Article  Google Scholar 

  3. Johnson, N. P. A. S. & Mueller, J. Updating the accounts: global mortality of the 1918–20 'Spanish' influenza epidemic. Bull. Hist. Med. 76, 105–115 (2002).

    Article  PubMed  Google Scholar 

  4. Ferguson, N. M., Fraser, C., Donnelly, C. A, Ghani, A. C. & Anderson, R. M. Public health risk from the avian H5N1 influenza epidemic. Science 304, 968–969 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ferguson, N. M. et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longini, I. M. Jr et al. Containing pandemic influenza at the source. Science 309, 1083–1087 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fouchier, R. A. et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814–2822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baigent, S. & McCauley, J. Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. BioEssays 25, 657–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Horimoto, T. & Kawaoka, Y. Influenza: lessons from past pandemics, warnings from current incidents. Nature Rev. Microbiol. 3, 591–600 (2005).

    Article  CAS  Google Scholar 

  12. Kuiken, T. et al. Host species barriers to influenza virus infections. Science 312, 394–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003). The first attempt to link the phylogenetic tree structure of HA1 from influenza A virus with an explicit epidemiological model.

    Article  CAS  PubMed  Google Scholar 

  14. Koelle, K., Cobey, S., Grenfell, B. & Pascual, M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314, 1898–1903 (2006). An important new phylodynamic model of evolution for the HA protein of influenza A virus, which was based on neutral networks. It links evolutionary change at the genetic, antigenic and epidemiological scales.

    Article  CAS  PubMed  Google Scholar 

  15. Fitch, W. M., Bush, R. M., Bender, C. A. & Cox, N. J. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc. Natl Acad. Sci.USA 94, 7712–7718 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Webster, R. G., Laver, W. G., Air, G. M. & Schild, G. C. Molecular mechanisms of variation in influenza viruses. Nature 296, 115–121 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Bush, R. M., Fitch, W. M., Bender, C. A. & Cox, N. J. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol. Biol. Evol. 16, 1457–1465 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ina, Y. & Gojobori, T. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc. Natl Acad. Sci. USA 91, 8388–8392 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki, Y. Natural selection on the influenza virus genome. Mol. Biol. Evol. 23, 1902–1911 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Fitch, W. M., Leiter J. M. E., Li X. & Palese P. Positive Darwinian evolution in human influenza A viruses. Proc. Natl Acad. Sci. USA 88, 4270–4274 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ratner, V. A., Kolchanov, N. A. & Omel'ianchuk, L. V. Phylogenetic analysis of genes of the influenza virus. Relationship between adaptability and neutrality. Genetika 25, 1499–1507 (1989).

    CAS  PubMed  Google Scholar 

  22. Bean, W. J. et al. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. J. Virol. 66, 1129–1138 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bush, R. M., Bender, C. A., Subbarao, K., Cox, N. J. & Fitch, W. M. Predicting the evolution of human influenza A. Science 286, 1921–1925 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Daly, J. M. et al. Antigenic and genetic evolution of equine H3N8 influenza A viruses. J. Gen. Virol. 77, 661–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita, M., Krystal, M., Firch, M. & Palese, P. Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology 163, 112–122 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Kanegae, Y. et al. Evolutionary pattern of the hemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineages in the same epidemic season. J. Virol. 64, 2860–2865 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Buonagurio, D. A. et al. Noncumulative sequence changes in the hemagglutinin genes of influenza C virus isolates. Virology 146, 221–232 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Plotkin, J. B., Dushoff, J. & Levin, S. A. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc. Natl Acad. Sci. USA 99, 6263–6268 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmes, E. C. et al. Whole genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 3, e300 (2005). The first large-scale analysis of the genome-wide evolution of influenza A virus. The authors show that multiple lineages can co-circulate within populations (in this case, the state of New York, USA) and reassort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson, M. I. et al. Stochastic processes are key determinants of the short-term evolution of influenza A virus. PLoS Pathog. 2, e125 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wolf, Y. I., Viboud, C., Holmes, E. C., Koonin, E. V. & Lipman, D. J. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol. Direct. 1, 34 (2006). A detailed analysis of the selection pressures that affect influenza A virus at the epidemic scale. The authors show that positive selection is punctuated rather than continuous, and is focused on epitopes in HA1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williamson, S. Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol. Biol. Evol. 20, 1318–1325 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004). A landmark paper that describes the antigenic cartography of influenza A virus and how it relates to evolution at the genetic level.

    Article  CAS  PubMed  Google Scholar 

  34. Lavenu, A. et al. Detailed analysis of the genetic evolution of influenza virus during the course of an epidemic. Epidemiol. Infect. 134, 514–520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Jong, J. C., Beyer, W. E. P., Palache, A. M., Rimmelzwaan, G. F. & Osterhaus, A. D. M. E. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 61, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Boni, M. F., Gog, J. R., Andreasen, V. & Feldman, M. W. Epidemic dynamics and antigenic evolution in a single season of influenza A. Proc. Biol. Sci. 273, 1307–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindstrom, S. E., Cox, N. J. & Klimov, A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 328, 101–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Taubenberger, J. K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Antonovics, J., Hood, M. & Baker, C. H. Molecular virology: was the 1918 flu avian in origin? Nature 440, e9 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Gibbs, M. J. & Gibbs, A. Molecular virology: was the 1918 pandemic caused by a bird flu? Nature 440, e8 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Barr, I. G. et al. An influenza A(H3) reassortant was epidemic in Australia and New Zealand in 2003. J. Med. Virol. 76, 391–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, Y. P., Bennett, G. M., & Hay, A. Recent changes among human influenza viruses. Virus Res. 103, 47–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Lindstrom, S. E. et al. Phylogenetic analysis of the entire genome of influenza A (H3N2) viruses from Japan: evidence for genetic reassortment of the six internal genes. J. Virol. 72, 8021–8031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindstrom, S. et al. Comparative analysis of evolutionary mechanisms of the hemagglutinin and three internal protein genes of influenza B virus: multiple cocirculating lineages and frequent reassortment of the NP, M, and NS genes. J. Virol. 73, 4413–4426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Macken, C. A., Webby, R. J. & Bruno, W. J. Genotype turnover by reassortment of replication complex genes from avian Influenza A virus. J. Gen. Virol. 87, 2803–2815 (2006). The first detailed attempt to use phylogenetic methods to measure the rate of reassortment in influenza virus, using avian isolates as a model system.

    Article  CAS  PubMed  Google Scholar 

  46. Didelot, X. & Falush, D. Inference of bacterial microevolution using multilocus sequence data. Genetics 6 Dec 2006 (doi: 10.1534/genetics.106.063305).

    Article  CAS  PubMed  Google Scholar 

  47. Rimmelzwaan, G. F., Berkhoff, E. G., Nieuwkoop, N. J., Fouchier, R. A. & Osterhaus, A. D. M. E. Functional compensation of a detrimental amino acid substitution in a cytotoxic-T-lymphocyte epitope of influenza A viruses by comutations. J. Virol. 78, 8946–8949 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitnaul, L. J. et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J. Virol. 74, 6015–6020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voeten, J. T. M. et al. Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J. Virol. 74, 6800–6807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khatchikian, D., Orlich, M. & Rott, R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340, 1567 (1989).

    Article  Google Scholar 

  51. Orlich, M., Gottwals, H. & Rott, R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204, 462–465 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Chare, E. R., Gould, E. A. & Holmes, E. C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 84, 2691–2703 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. Recombination in the hemagglutinin gene of the 1918 'Spanish flu'. Science 293, 1842–1845 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Worobey, M., Rambaut, A., Pybus, O. P. & Robertson D. L. Questioning the evidence for genetic recombination in the 1918 'Spanish flu' virus. Science 296, 211 (2002).

    Article  PubMed  Google Scholar 

  55. Drake, J. W. & Holland, J. J. Mutation rates among RNA viruses. Proc. Natl Acad. Sci. USA 96, 13910–13913 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanada, K., Suzuki, Y. & Gojobori, T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to diversity of viral infection and transmission modes. Mol. Biol. Evol. 21, 1074–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic approach. J. Mol. Evol. 54, 156–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, R. & Holmes, E. C. Avian influenza virus exhibits rapid evolutionary dynamics. Mol. Biol. Evol. 23, 2336–2341 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Suarez, D. L. Evolution of avian influenza viruses. Vet. Microbiol. 74, 15–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Ludwig, S. et al. Recent influenza A (H1N1) infections of pigs and turkeys in Northern Europe. Virology 202, 281–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Gorman, O. T. et al. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses. J. Virol. 65, 3704–3714 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Air, M., Gibbs, A. J., Laver, W. G. & Webster, R. G. Evolutionary changes in influenza B are not primarily governed by antibody selection. Proc. Natl Acad. Sci. USA 87, 3884–3888 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gorman, O. T., Bean, W. J., Kawaoka, Y. & Webster, R. G. Evolution of nucleoprotein gene of influenza A virus. J. Virol. 64, 1487–1497 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Suzuki, Y. & Nei, M. Origin and evolution of influenza virus hemagglutinin genes. Mol. Biol. Evol. 19, 501–509 (2002).

    Article  PubMed  Google Scholar 

  65. Bean, W. J. et al. Evolution of H3 influenza virus hemagglutinin from human and non-human hosts. J. Virol. 66, 1129–1138 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rambaut, A. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006). An important methodological paper that shows how key evolutionary parameters, particularly substitution rates and times of divergence, can be estimated from temporally sampled data sets such as those from RNA viruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drummond, A., Pybus, O. G. & Rambaut, A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358 (2003).

    Article  PubMed  Google Scholar 

  69. Dowell, S. F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 7, 369–374 (2001). An excellent review of the possible causes of seasonality in influenza virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hemmes, J., Winkler, K. & Kool, S. Virus survival as a seasonal factor in influenza and poliomyeletitis. Nature 188, 430–431 (1960).

    Article  CAS  PubMed  Google Scholar 

  71. Schulman, J. & Kilbourne, E. Experimental transmission of influenza virus infection in mice. II. Some factors affecting the incidence of transmitted infections. J. Exp. Med. 118, 267–275 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiu, S. S. et al. Influenza-related hospitalizations among children in Hong Kong. N. Engl. J. Med. 347, 2097–2103 (2002).

    Article  PubMed  Google Scholar 

  73. Wong, C. M. et al. Influenza-associated hospitalization in a subtropical city. PLoS Med. 3, e121 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nelson, R. J., Demas, G. E., Kelin, S. L. & Kriegsfeld, L. J. Seasonal Patterns Of Stress, Immune Function, And Disease (Cambridge Univ. Press, London, 2002).

    Book  Google Scholar 

  75. Shephard, R. J. & Shek, P. N. Cold exposure and immune function. Can. J. Physiol. Pharmacol. 76, 828–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Cannell, J. J. et al. Epidemic influenza and vitamin D. Epidemiol. Infect. 134, 1129–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Halvorson, D. A., Kelleher, C. J. & Senne, D. A. Epizootiology of avian influenza: effect of season on incidence in sentinal ducks and domestic turkeys in Minnesota. Appl. Environ. Micro. 49, 914–919 (1985).

    CAS  Google Scholar 

  78. Viboud, C. et al. Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerg. Infect. Dis. 10, 32–39 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shek, L. P. C. & Lee, B. W. Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr. Respir. Rev. 4, 105–111 (2003).

    Article  PubMed  Google Scholar 

  80. Viboud, C., Alonso, W. J. & Simonsen, L. Influenza in tropical regions. PLoS Med. 3, e89–e90 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006). An elegant description of the spatial dynamics of influenza virus within the United Sates. The authors show that the local spread of influenza A virus is largely determined by patterns of workflow.

    Article  CAS  PubMed  Google Scholar 

  82. Smith, D. J. Predictability and preparedness in influenza control. Science 312, 392–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ghedin, E. et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437, 1162–1166 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Domingo, E. & Holland, J. J. RNA virus mutations for fitness and survival. Ann. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  Google Scholar 

  85. Aaskov, J., Buzacott, K., Thu, H. M., Lowry, K. & Holmes, E. C. Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311, 236–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005). A reconstruction of the genome of the H1N1 influenza A virus that was associated with the 1918 pandemic, and an investigation of its virulence determinants.

    Article  CAS  PubMed  Google Scholar 

  87. Kash, J. C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Steinhauer, D. A. & Skehel, J. J. Genetics of influenza viruses. Ann. Rev. Genet. 36, 305–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lamb, R. A. & Klug, R. M. in Fundamental Virology 3rd edn (eds Fields, B. N., Knipe, D. M. & Howley, P. M. et al.) 605–647 (Lippincott–Raven, Philadelphia, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Holmes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Center for Infectious Disease Dynamics

Influenza Virus Resource

National Center for Health Statistics

Glossary

Pandemic

An epidemic that occurs over a large geographical area, including multiple countries.

Epidemic

The occurrence of more cases than expected of an infectious disease, in a defined geographical area over a defined time period.

Reassortment

A form of recombination in which two (or more) influenza viruses, of the same or different subtypes, co-infect a single cell and exchange RNA segments to form genetically novel viruses.

Haemagglutinin

An influenza virus surface glycoprotein, denoted HA, which is responsible for viral binding and entry into host epithelial cells. Sixteen HA serotypes are present in animal species.

Neuraminidase

An influenza virus surface glycoprotein, denoted NA, which is involved in the budding (release) of new virions from infected cells. Nine NA serotypes are present in animal species.

Antigenic drift

The continual evasion of host immunity by the gradual accumulation of mutations in the haemagglutinin and neuraminidase surface glycoproteins of influenza A virus, changing its antigenic structure.

Epitope

A small sequence of a viral protein that is recognized by either the cellular or humoral arms of the immune system, and therefore frequently undergoes the strongest adaptive selection to rapidly evolve immune-escape mutants.

Population bottleneck

A marked reduction in population size followed by the survival and expansion of a small sample of the original population.

Antigenic shift

The formation of a new influenza virus subtype with a novel combination of haemagglutinin and neuraminidase segments, which are derived from two different parental influenza strains, that combined through genomic reassortment.

Maximum likelihood

A statistical method that selects the phylogenetic tree with the highest probability of explaining the sequence data, under a specific model of substitution (changes in the nucleotide or amino-acid sequence).

Bayesian Markov chain Monte Carlo

(MCMC); Bayesian statistical inference allows the use of prior knowledge in assessing the probability of model parameters in the presence of new data. The prior distribution can strongly affect the posterior (the results). MCMC is a stochastic algorithm for drawing samples from a posterior distribution, therein providing an estimate of the distribution.

Gravity model

A methodology that extends Newtonian gravitational laws to models of behavioural patterns that mimic gravitational interaction, in that the effect of one population (mass) on another is inversely related to the spatial distance between them.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., Holmes, E. The evolution of epidemic influenza. Nat Rev Genet 8, 196–205 (2007). https://doi.org/10.1038/nrg2053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2053

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing