Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological and pathophysiological bone turnover — role of the immune system

Key Points

  • Receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) are key downstream effectors of bone resorption; tumour necrosis factor (TNF) might synergize with RANKL to superinduce osteoclastic bone resorption

  • B cells, regulated by T cells, are a key source of basal OPG whereas activated T cells and B cells are key sources of TNF and RANKL in inflammatory conditions

  • Short-term antiresorptive therapies might safely prevent bone loss associated with combination antiretroviral therapy

  • Anergic and parathyroid-hormone-treated T cells secrete the protein Wnt-10b, which promotes bone formation

  • Novel therapeutic strategies targeting the immune system might promote bone formation and decrease bone resorption to manage osteoporotic bone loss and prevent fracture

Abstract

Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno–skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of the RANK–RANKL–OPG system in physiological osteoclast formation.
Figure 2: Role of the immuno–skeletal interface in physiological osteoclast formation.
Figure 3: Bone loss associated with HIV infection and initiated by cART.
Figure 4: Augmentation of oestrogen deficiency bone loss by changes in the immuno–skeletal interface.
Figure 5: T-cell anergy promotes Wnt-10b secretion and bone anabolism.

Similar content being viewed by others

References

  1. Eisman, J. A. et al. Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. J. Bone Miner. Res. 27, 2039–2046 (2012).

    Article  PubMed  Google Scholar 

  2. World Health Organization. Prevention and management of osteoporosis (WHO, 2003).

  3. Kates, S. L., Kates, O. S. & Mendelson, D. A. Advances in the medical management of osteoporosis. Injury 38, S17–S23 (2007).

    Article  PubMed  Google Scholar 

  4. Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bass, E., French, D. D., Bradham, D. D. & Rubenstein, L. Z. Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann. Epidemiol. 17, 514–519 (2007).

    Article  PubMed  Google Scholar 

  6. Lewis, J. R., Hassan, S. K., Wenn, R. T. & Moran, C. G. Mortality and serum urea and electrolytes on admission for hip fracture patients. Injury 37, 698–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ofotokun, I., McIntosh, E. & Weitzmann, M. N. HIV: inflammation and bone. Curr. HIV/AIDS Rep. 9, 16–25 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Titanji, K. et al. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog. 10, e1004497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vikulina, T. et al. Alterations in the immuno–skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc. Natl Acad. Sci. USA 107, 13848–13853 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Robinson, J. W. et al. T cell expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment. J. Bone Miner. Res. 30, 695–705 (2014).

    Article  CAS  Google Scholar 

  12. Li, J. Y. et al. The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10b. J. Bone Miner. Res. 29, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Bedi, B. et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc. Natl Acad. Sci. USA 109, E725–E733 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Terauchi, M. et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 10, 229–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roser-Page, S., Vikulina, T., Zayzafoon, M. & Weitzmann, M. N. CTLA-4Ig-induced T cell anergy promotes Wnt-10b production and bone formation in a mouse model. Arthritis Rheumatol. 66, 990–999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manolagas, S. C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115–137 (2000).

    CAS  PubMed  Google Scholar 

  17. Walker, D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190, 784–785 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Walker, D. G. Congenital osteopetrosis in mice cured by parabiotic union with normal siblings. Endocrinology 91, 916–920 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. Buring, K. On the origin of cells in heterotopic bone formation. Clin. Orthop. Relat. Res. 110, 293–301 (1975).

    Article  Google Scholar 

  20. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Tsuda, E. et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Matsuzaki, K. et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem. Biophys. Res. Commun. 246, 199–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Khosla, S. Minireview: the OPG/RANKL/RANK system. Endocrinology 142, 5050–5055 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yun, T. J. et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J. Immunol. 161, 6113–6121 (1998).

    CAS  PubMed  Google Scholar 

  33. Li, Y. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109, 3839–3848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gyarmati, J. et al. Alterations of the connective tissue in nude mice. Thymus 5, 383–392 (1983).

    PubMed  Google Scholar 

  36. Horowitz, M., Vignery, A., Gershon, R. K. & Baron, R. Thymus-derived lymphocytes and their interactions with macrophages are required for the production of osteoclast-activating factor in the mouse. Proc. Natl Acad. Sci. USA 81, 2181–2185 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grcevic, D., Lee, S. K., Marusic, A. & Lorenzo, J. A. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1, 25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. J. Immunol. 165, 4231–4238 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Klausen, B., Hougen, H. P. & Fiehn, N. E. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats. J. Periodontal Res. 24, 384–390 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Pineda, B., Laporta, P., Hermenegildo, C., Cano, A. & Garcia-Perez, M. A. A C>T polymorphism located at position -1 of the Kozak sequence of CD40 gene is associated with low bone mass in Spanish postmenopausal women. Osteoporos. Int. 19, 1147–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Granados, E. et al. Osteopenia in X-linked hyper-IgM syndrome reveals a regulatory role for CD40 ligand in osteoclastogenesis. Proc. Natl Acad. Sci. USA 104, 5056–5061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603–1609 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Bozec, A. et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl Med. 6, 235ra260 (2014).

    Article  CAS  Google Scholar 

  43. Moir, S. & Fauci, A. S. B cells in HIV infection and disease. Nat. Rev. Immunol. 9, 235–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205, 1797–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aukrust, P. et al. Decreased bone formative and enhanced resorptive markers in human immunodeficiency virus infection: indication of normalization of the bone-remodeling process during highly active antiretroviral therapy. J. Clin. Endocrinol. Metab. 84, 145–150 (1999).

    CAS  PubMed  Google Scholar 

  46. Tebas, P. et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 14, F63–F67 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Jain, R. G. & Lenhard, J. M. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J. Biol. Chem. 277, 19247–19250 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Mora, S. et al. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS 15, 1823–1829 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, J. S., Wilkie, S. J., Sullivan, M. P. & Grinspoon, S. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting. J. Clin. Endocrinol. Metab. 86, 3533–3539 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Mondy, K. & Tebas, P. Emerging bone problems in patients infected with human immunodeficiency virus. Clin. Infect. Dis. 36, S101–S105 (2003).

    Article  PubMed  Google Scholar 

  51. Brown, T. T. & Qaqish, R. B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20, 2165–2174 (2006).

    Article  PubMed  Google Scholar 

  52. Bonjoch, A. et al. High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study. AIDS 24, 2827–2833 (2010).

    Article  PubMed  Google Scholar 

  53. Sharma, A., Flom, P. L., Weedon, J. & Klein, R. S. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. AIDS 24, 2337–2345 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Triant, V. A., Brown, T. T., Lee, H. & Grinspoon, S. K. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J. Clin. Endocrinol. Metab. 93, 3499–3504 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prior, J. et al. Fragility fractures and bone mineral density in HIV positive women: a case–control population-based study. Osteoporos. Int. 18, 1345–1353 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Young, B., Dao, C. N., Buchacz, K., Baker, R. & Brooks, J. T. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin. Infect. Dis. 52, 1061–1068 (2011).

    Article  PubMed  Google Scholar 

  57. Womack, J. A. et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS ONE 6, e17217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guerri-Fernandez, R. et al. HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study. J. Bone Miner. Res. 28, 1259–1263 (2013).

    Article  PubMed  Google Scholar 

  59. Prieto-Alhambra, D. et al. HIV infection and its association with an excess risk of clinical fractures: a nationwide case–control study. J. Acquir. Immune Def. Syndr. 66, 90–95 (2014).

    Article  Google Scholar 

  60. Sharma, A. et al. Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the women's interagency HIV study. J. Acquir. Immune Defic. Syndr. 70, 54–61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yin, M. T. et al. Fracture incidence in HIV-infected women: results from the Women's Interagency HIV Study. AIDS 24, 2679–2686 (2010).

    Article  PubMed  Google Scholar 

  62. Vance, D. E., McGuinness, T., Musgrove, K., Orel, N. A. & Fazeli, P. L. Successful aging and the epidemiology of HIV. Clin. Interv. Aging 6, 181–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Amorosa, V. & Tebas, P. Bone disease and HIV infection. Clin. Infect. Dis. 42, 108–114 (2006).

    Article  PubMed  Google Scholar 

  64. Ofotokun, I. & Weitzmann, M. N. HIV-1 infection and antiretroviral therapies: risk factors for osteoporosis and bone fracture. Curr. Opin. Endocrinol. Diabetes Obes. 17, 523–529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ofotokun, I. & Weitzmann, M. N. HIV and bone metabolism. Discov. Med. 11, 385–393 (2011).

    PubMed  PubMed Central  Google Scholar 

  66. Bruera, D., Luna, N., David, D. O., Bergoglio, L. M. & Zamudio, J. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 17, 1917–1923 (2003).

    Article  PubMed  Google Scholar 

  67. Dube, M. P. et al. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin. Infect. Dis. 35, 475–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Knobel, H., Guelar, A., Vallecillo, G., Nogues, X. & Diez, A. Osteopenia in HIV-infected patients: is it the disease or is it the treatment? AIDS 15, 807–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Reid, W. et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl Acad. Sci. USA 98, 9271–9276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lafferty, M. K. et al. Elevated suppressor of cytokine signaling-1 (SOCS-1): a mechanism for dysregulated osteoclastogenesis in HIV transgenic rats. Pathog. Dis. 71, 81–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, T. T. et al. Body composition, soluble markers of inflammation, and bone mineral density in antiretroviral therapy-naive HIV-1-infected individuals. J. Acquir. Immune Defic. Syndr. 63, 323–330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas, J. & Doherty, S. M. HIV infection — a risk factor for osteoporosis. J. Acquir. Immune Defic. Syndr. 33, 281–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. McComsey, G. A. et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin. Infect. Dis. 51, 937–946 (2010).

    Article  PubMed  Google Scholar 

  74. Yin, M. T. et al. Short-term bone loss in HIV-infected premenopausal women. J. Acquir. Immune Defic. Syndr. 53, 202–208 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bolland, M. J. & Grey, A. HIV and low bone density: responsible party, or guilty by association? IBMS BoneKEy 8, 7–15 (2011).

    Article  Google Scholar 

  76. Nolan, D. et al. Stable or increasing bone mineral density in HIV-infected patients treated with nelfinavir or indinavir. AIDS 15, 1275–1280 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Bolland, M. J. et al. Stable bone mineral density over 6 years in HIV-infected men treated with highly active antiretroviral therapy (HAART). Clin. Endocrinol. (Oxf.) 76, 643–648 (2012).

    Article  CAS  Google Scholar 

  78. Gibellini, D. et al. Analysis of the effects of specific protease inhibitors on OPG/RANKL regulation in an osteoblast-like cell line. New Microbiol. 33, 109–115 (2010).

    CAS  PubMed  Google Scholar 

  79. Grigsby, I. F., Pham, L., Gopalakrishnan, R., Mansky, L. M. & Mansky, K. C. Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts. Biochem. Biophys. Res. Commun. 391, 1324–1329 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Grigsby, I. F. et al. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss. Biochem. Biophys. Res. Commun. 394, 48–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, M. W. et al. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J. Clin. Invest. 114, 206–213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brown, T. T. et al. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J. Acquir. Immune Defic. Syndr. 51, 554–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Piso, R. J., Rothen, M., Rothen, J. P. & Stahl, M. Markers of bone turnover are elevated in patients with antiretroviral treatment independent of the substance used. J. Acquir. Immune Defic. Syndr. 56, 320–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Deeks, S. G., Tracy, R. & Douek, D. C. Systemic effects of inflammation on health during chronic HIV infection. Immunity 39, 633–645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hofbauer, L. C. et al. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α. J. Clin. Invest. 106, 1229–1237 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fuller, K., Murphy, C., Kirstein, B., Fox, S. W. & Chambers, T. J. TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143, 1108–1118 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Ofotokun, I. et al. Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS 30, 405–414 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Brown, T. T., Ross, A. C., Storer, N., Labbato, D. & McComsey, G. A. Bone turnover, osteoprotegerin/RANKL and inflammation with antiretroviral initiation: tenofovir versus non-tenofovir regimens. Antivir. Ther. 16, 1063–1072 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Hui, S. L., Slemenda, C. W. & Johnston, C. C. Jr Age and bone mass as predictors of fracture in a prospective study. J. Clin. Invest. 81, 1804–1809 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bolland, M. J. et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J. Clin. Endocrinol. Metab. 92, 1283–1288 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Bolland, M. J. et al. Effects of intravenous zoledronate on bone turnover and bone density persist for at least five years in HIV-infected men. J. Clin. Endocrinol. Metab. 97, 1922–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. McComsey, G. A. et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS 21, 2473–2482 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Brown, T. T. et al. Recommendations for evaluation and management of bone disease in HIV. Clin. Infect. Dis. 60, 1242–1251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Reid, I. R. et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N. Engl. J. Med. 346, 653–661 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Ofotokun, I. et al. Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat. Commun. 6, 8282 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Ofotokun, I. et al. A single dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naive HIV-infected patients: a phase IIb trial. Clin. Infect. Dis. http://dx.doi.org/10.1093/cid/ciw331 (2016).

  99. Chopin, F. et al. Long term effects of Infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 353–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Seriolo, B., Paolino, S., Sulli, A., Ferretti, V. & Cutolo, M. Bone metabolism changes during anti-TNF-α therapy in patients with active rheumatoid arthritis. Ann. NY Acad. Sci. 1069, 420–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Wheater, G. et al. Suppression of bone turnover by B-cell depletion in patients with rheumatoid arthritis. Osteoporos. Int. 22, 3067–3072 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Schett, G. & David, J. P. The multiple faces of autoimmune-mediated bone loss. Nat. Rev. Endocrinol. 6, 698–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Fournier, C. Where do T cells stand in rheumatoid arthritis? Joint Bone Spine 72, 527–532 (2005).

    Article  PubMed  Google Scholar 

  106. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. He, X., Kang, A. H. & Stuart, J. M. Anti-human type II collagen CD19+ B cells are present in patients with rheumatoid arthritis and healthy individuals. J. Rheumatol. 28, 2168–2175 (2001).

    CAS  PubMed  Google Scholar 

  108. Yanaba, K. et al. B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. J. Immunol. 179, 1369–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Li, P. & Schwarz, E. M. The TNF-α transgenic mouse model of inflammatory arthritis. Springer Semin. Immunopathol. 25, 19–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Schett, G. et al. Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum. 48, 2042–2051 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Fry, T. J. & Mackall, C. L. Interleukin-7: master regulator of peripheral T-cell homeostasis? Trends Immunol. 22, 564–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. De Benedetti, F. et al. Elevated circulating interleukin-7 levels in patients with systemic juvenile rheumatoid arthritis. J. Rheumatol. 22, 1581–1585 (1995).

    CAS  PubMed  Google Scholar 

  113. Hartgring, S. A., Willis, C. R., Bijlsma, J. W., Lafeber, F. P. & van Roon, J. A. Interleukin-7-aggravated joint inflammation and tissue destruction in collagen-induced arthritis is associated with T-cell and B-cell activation. Arthritis Res. Ther. 14, R137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hartgring, S. A. et al. Blockade of the interleukin-7 receptor inhibits collagen-induced arthritis and is associated with reduction of T cell activity and proinflammatory mediators. Arthritis Rheum. 62, 2716–2725 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Buchwald, Z. S. et al. Osteoclast-induced Foxp3+ CD8 T-cells limit bone loss in mice. Bone 56, 163–173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Glowacki, A. J. et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc. Natl Acad. Sci. USA 110, 18525–18530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zaiss, M. M. et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol. 184, 7238–7246 (2010).

    Article  PubMed  Google Scholar 

  118. Kim, Y. G. et al. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 357, 1046–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Zaiss, M. M. et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 56, 4104–4112 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Zaiss, M. M. et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum. 62, 2328–2338 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Rifas, L. & Weitzmann, M. N. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheumatol. 60, 3324–3335 (2009).

    Article  CAS  Google Scholar 

  122. Jarry, C. R. et al. Secreted osteoclastogenic factor of activated T cells (SOFAT), a novel osteoclast activator, in chronic periodontitis. Hum. Immunol. 74, 861–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garlet, G. P. et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J. Clin. Periodontol. 37, 591–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Araujo-Pires, A. C. et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J. Bone Miner. Res. 30, 412–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Zhu, L. L. et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl Acad. Sci. USA 109, 14574–14579 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Clowes, J. A., Riggs, B. L. & Khosla, S. The role of the immune system in the pathophysiology of osteoporosis. Immunol. Rev. 208, 207–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Di Gregorio, G. B. et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 β-estradiol. J. Clin. Invest. 107, 803–812 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Szulc, P., Hofbauer, L. C., Heufelder, A. E., Roth, S. & Delmas, P. D. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J. Clin. Endocrinol. Metab. 86, 3162–3165 (2001).

    CAS  PubMed  Google Scholar 

  130. Srivastava, S. et al. Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J. Clin. Invest. 102, 1850–1859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Srivastava, S. et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-κB ligand (RANKL)-induced JNK activation. J. Biol. Chem. 276, 8836–8840 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, B. J. et al. TNF-α mediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem. Biophys. Res. Commun. 424, 170–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Salem, M. L. Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr. Drug Targets Inflamm. Allergy 3, 97–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Masuzawa, T. et al. Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J. Clin. Invest. 94, 1090–1097 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Miyaura, C. et al. Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency. Proc. Natl Acad. Sci. USA 94, 9360–9365 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Onal, M. et al. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem. 287, 29851–29860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roggia, C. et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl Acad. Sci. USA 98, 13960–13965 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Grassi, F. et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc. Natl Acad. Sci. USA 104, 15087–15092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cenci, S. et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-γ-induced class II transactivator. Proc. Natl Acad. Sci. USA 100, 10405–10410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Luo, C. Y., Wang, L., Sun, C. & Li, D. J. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell. Mol. Immunol. 8, 50–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Gao, Y. et al. Estrogen prevents bone loss through transforming growth factor β signaling in T cells. Proc. Natl Acad. Sci. USA 101, 16618–16623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, H. et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116, 210–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Britton, R. A. et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell. Physiol. 229, 1822–1830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ohlsson, C. et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS ONE 9, e92368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, J. Y. et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest. http://dx.doi.org/10.1172/JCI86062 (2016).

  147. Lindberg, M. K. et al. Liver-derived IGF-I is permissive for ovariectomy-induced trabecular bone loss. Bone 38, 85–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. & Pacifici, R. Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873–1878 (2000).

    CAS  PubMed  Google Scholar 

  149. Toraldo, G., Roggia, C., Qian, W. P., Pacifici, R. & Weitzmann, M. N. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor κB ligand and tumor necrosis factor α from T cells. Proc. Natl Acad. Sci. USA 100, 125–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Tyagi, A. M. et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS ONE 7, e44552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, Y. et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J. Dent. Res. 93, 1124–1132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tyagi, A. M. et al. Daidzein prevents the increase in CD4+CD28null T cells and B lymphopoesis in ovariectomized mice: a key mechanism for anti-osteoclastogenic effect. PLoS ONE 6, e21216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tyagi, A. M. et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. J. Bone Miner. Res. 29, 1981–1992 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Lee, S. K., Kalinowski, J. F., Jastrzebski, S. L., Puddington, L. & Lorenzo, J. A. Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 144, 3524–3531 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Valenzona, H. O., Pointer, R., Ceredig, R. & Osmond, D. G. Prelymphomatous B cell hyperplasia in the bone marrow of interleukin-7 transgenic mice: precursor B cell dynamics, microenvironmental organization and osteolysis. Exp. Hematol. 24, 1521–1529 (1996).

    CAS  PubMed  Google Scholar 

  157. Aguila, H. L. et al. Osteoblast-specific overexpression of human interleukin-7 rescues the bone mass phenotype of interleukin-7-deficient female mice. J. Bone Miner. Res. 27, 1030–1042 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Weitzmann, M. N., Roggia, C., Toraldo, G., Weitzmann, L. & Pacifici, R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rodriguiz, R. M., Key, L. L. Jr & Ries, W. L. Combination macrophage-colony stimulating factor and interferon-γ administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr. Res. 33, 384–389 (1993).

    CAS  PubMed  Google Scholar 

  160. Alam, I. et al. Interferon γ, but not calcitriol improves the osteopetrotic phenotypes in ADO2 mice. J. Bone Miner. Res. 30, 2005–2013 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Key, L. L. Jr. et al. Long-term treatment of osteopetrosis with recombinant human interferon γ. N. Engl. J. Med. 332, 1594–1599 (1995).

    Article  PubMed  Google Scholar 

  162. Yamaza, T. et al. Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS ONE 3, e2615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sass, D. A. et al. The role of the T-lymphocyte in estrogen deficiency osteopenia. J. Bone Miner. Res. 12, 479–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Lee, S. K. et al. T Lymphocyte deficient mice lose trabecular bone mass with ovariectomy. J. Bone Miner. Res. 21, 1704–1712 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Cho, S. W. et al. Human adipose tissue-derived stromal cell therapy prevents bone loss in ovariectomized nude mouse. Tissue Eng. Part A 18, 1067–1078 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. D'Amelio, P. et al. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43, 92–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Adeel, S. et al. Bone loss in surgically ovariectomized premenopausal women is associated with T lymphocyte activation and thymic hypertrophy. J. Investig. Med. 61, 1178–1183 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kimble, R. B. et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136, 3054–3061 (1995).

    Article  CAS  PubMed  Google Scholar 

  169. Gao, Y. et al. IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Invest. 117, 122–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Lee, S. K. et al. Interleukin-7 influences osteoclast function in vivo but is not a critical factor in ovariectomy-induced bone loss. J. Bone Miner. Res. 21, 695–702 (2006).

    Article  PubMed  Google Scholar 

  171. Goswami, J., Hernandez-Santos, N., Zuniga, L. A. & Gaffen, S. L. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur. J. Immunol. 39, 2831–2839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Pacifici, R. T cells: critical bone regulators in health and disease. Bone 47, 461–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tawfeek, H. et al. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS ONE 5, e12290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hory, B. G. et al. Absence of response to human parathyroid hormone in athymic mice grafted with human parathyroid adenoma, hyperplasia or parathyroid cells maintained in culture. J. Endocrinol. Invest. 23, 273–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Gao, Y. et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab. 8, 132–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bedi, B. et al. Inhibition of antigen presentation and T cell costimulation blocks PTH-induced bone loss. Ann. NY Acad. Sci. 1192, 215–221 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Buchwald, Z. S. et al. A bone anabolic effect of RANKL in a murine model of osteoporosis mediated through FoxP3+ CD8 T-Cells. J. Bone Miner. Res. 30, 1508–1522 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Sayegh, M. H. Finally, CTLA4Ig graduates to the clinic. J. Clin. Invest. 103, 1223–1225 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pacifici, R. Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine 44, 576–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Li, Y. et al. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κB. J. Bone Miner. Res. 22, 646–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Gilbert, L. C., Chen, H., Lu, X. & Nanes, M. S. Chronic low dose tumor necrosis factor-α (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone 56, 174–183 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge research support from the Biomedical Laboratory Research and Development Service of the Veteran's Affairs Office of Research and Development (Grant BX000105 to M.N.W.) and National Institutes of Health grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR059364, AR056090 and AR053607) and the National Institute on Aging (AG040013) to M.N.W. and I.O.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content, and edited and/or reviewed the manuscript before submission. M.N.W. wrote the manuscript.

Corresponding author

Correspondence to M. Neale Weitzmann.

Ethics declarations

Competing interests

M.N.W. has filed a patent on the use of abatacept for stimulating bone anabolism. I.O. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitzmann, M., Ofotokun, I. Physiological and pathophysiological bone turnover — role of the immune system. Nat Rev Endocrinol 12, 518–532 (2016). https://doi.org/10.1038/nrendo.2016.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing