Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paget's disease of bone—genetic and environmental factors

Key Points

  • The prevalence of Paget's disease has decreased in many countries

  • A large number of patients have a family history of Paget's disease

  • Mutations in SQSTM1 (which encodes sequestosome-1) account for the susceptibility to develop Paget's disease in some families

  • Some studies in patients with Paget's disease and in transgenic mice support the involvement of measles virus in the aetiology of the disorder

  • The availability of effective measles vaccines since 1963 might explain the decrease in diagnosis of Paget's disease in a number of countries

Abstract

Paget's disease of bone is generally diagnosed in individuals aged >50 years, usually manifests in one or several bones and is initiated by osteoclast-induced osteolytic lesions. Subsequently, over a period of many years, osteoblastic activity can result in sclerosis and deformation of bone. The prevalence of Paget's disease is highest in the UK and in countries where a large number of residents have ancestors from the UK. Currently, in many countries, the prevalence of the disorder has decreased. A considerable number of affected patients have a family history of Paget's disease and the disorder has an autosomal dominant pattern of inheritance but with incomplete penetrance. A large number of mutations in SQSTM1 (which encodes sequestosome-1; also known as ubiquitin-binding protein p62) seem to account for the susceptibility to develop Paget's disease in some families; the involvement of other genes is currently under investigation. In addition to a genetic cause, environmental factors have been proposed to have a role in the pathogenesis of Paget's disease. Although most evidence has been presented for measles virus as an aetiologic factor, some studies have not confirmed its involvement. The decreasing incidence of Paget's disease, which could be attributed to measles vaccination along with the measles virus nucleocapsid protein induction of Paget's disease lesions in transgenic mice, supports an aetiologic role of the virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone biopsy sample of a man with Paget's disease.
Figure 2: Nucleus of an osteoclast from a woman with Paget's disease.

Similar content being viewed by others

References

  1. Paget, J. On a form of chronic inflammation of bones (osteitis deformans). Med. Chir. Trans. 60, 37–64. 9 (1877).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corral-Gudino, L., Borao-Cengotita-Bengoa, M., Del Pino-Montes, J. & Ralston, S. Epidemiology of Paget's disease of bone: a systematic review and meta-analysis of secular changes. Bone 55, 347–352 (2013).

    Article  PubMed  Google Scholar 

  3. Rontgen, W. C. Uber eine neue Art von Strahlen [German]. (Sitzberichte der Wurzburger Physikalischen-Medinischen Gesellshaft, 1895).

    Google Scholar 

  4. Schmorl, G. Uber ostitis deformans Paget [German]. Virchow Arch. Pathol. Anat. Physiol. Klin. Med. 283, 694–751 (1932).

    Article  Google Scholar 

  5. Kay, H. D. Plasma phosphatase in osteitis deformans and in other disease of bone. Br. J. Exp. Pathol. 10, 253–256 (1929).

    CAS  PubMed Central  Google Scholar 

  6. Shankar, S. & Hosking, D. J. Biochemical assessment of Paget's disease of bone. J. Bone Miner. Res. 21 (Suppl. 2), P22–P27 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Maldague, B. & Malghem, J. Dynamic radiologic patterns of Paget's disease of bone. Clin. Orthop. Relat. Res. 217, 126–151 (1987).

    Google Scholar 

  8. Rebel, A., Malkani, K. & Basle, M. Nuclear anomalies in osteoclasts in Paget's bone disease [French]. Nouv. Presse Med. 3, 1299–1301 (1974).

    CAS  PubMed  Google Scholar 

  9. Mills, B. G. & Singer, F. R. Nuclear inclusions in Paget's disease of bone. Science 194, 201–202 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Renier, J. C. & Audran, M. Progression in length and width of pagetic lesions and estimation of age at disease onset. Rev. Rhum. Engl. Ed. 64, 35–43 (1997).

    CAS  PubMed  Google Scholar 

  11. Corral-Gudino, L. et al. Secular changes in Paget's disease: contrasting changes in the number of new referrals and in disease severity in two neighboring regions of Spain. Osteoporos. Int. 24, 443–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Gennari, L., Merlotti, D., Martini, G. & Nuti, R. Paget's disease of bone in Italy. J. Bone Miner. Res. 21, 14–21 (2006).

    Article  Google Scholar 

  13. Pick, A. Osteitis deformans. Lancet 2, 1125–1126 (1883).

    Article  Google Scholar 

  14. Siris, E. S., Ottman, R., Flaster, E. & Kelsey, J. L. Familial aggregation of Paget's disease of bone. J. Bone Miner. Res. 6, 495–500 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Sofaer, J. A., Holloway, S. M. & Emery, A. E. A family study of Paget's disease of bone. J. Epidemiol. Community Health 37, 226–231 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morales-Piga, A. A., Rey-Rey, J. S., Corres-Gonzalez, J., Garcia-Sagredo, J. M. & Lopez-Abente, G. Frequency and characteristics of familial aggregation of Paget's disease of bone. J. Bone Miner. Res. 10, 663–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Laurin, N., Brown, J. P., Morissette, J. & Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rea, S. L., Walsh, J. P., Layfield, R., Ratajczak, T. & Xu, J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr. Rev. 34, 501–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Morissette, J., Laurin, N. & Brown, J. P. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget's disease of bone. J. Bone Miner. Res. 21 (Suppl. 2), P38–P44 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Lucas, G. J. et al. Ubiquitin-associated domain mutations of SQSTM1 in Paget's disease of bone: evidence for a founder effect in patients of British descent. J. Bone Miner. Res. 20, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Chung, P. Y. et al. Founder effect in different European countries for the recurrent P392L SQSTM1 mutation in Paget's disease of bone. Calcif. Tissue Int. 83, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Michou, L. et al. Novel SQSTM1 mutations in patients with Paget's disease of bone in an unrelated multiethnic American population. Bone 48, 456–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Rhodes, E. C. et al. Sequestosome 1 (SQSTM1) mutations in Paget's disease of bone from the United States. Calcif. Tissue Int. 82, 271–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Goode, A. et al. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Biochim. Biophys. Acta 1842, 992–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Visconti, M. R. et al. Mutations of SQSTM1 are associated with severity and clinical outcome in Paget disease of bone. J. Bone Miner. Res. 25, 2368–2373 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Bolland, M. J. et al. Delayed development of Paget's disease in offspring inheriting SQSTM1 mutations. J. Bone Miner. Res. 22, 411–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Cundy, T., Rutland, M. D., Naot, D. & Bolland, M. Evolution of Paget's disease of bone in adults inheriting SQSTM1 mutations. Clin. Endocrinol. (Oxf.) http://dx.doi.orh/10.1111/cen.12741.

  28. Chung, P. Y. Paget's disease of bone: evidence for complex pathogenetic interactions. Semin. Arthritis Rheum. 41, 619–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Beauregard, M. et al. Identification of rare genetic variants in novel loci associated with Paget's disease of bone. Hum. Genet. 133, 755–768 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Vallet, M. et al. Targeted sequencing of the Paget's disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget's disease of bone. Hum. Mol. Genet. 24, 3286–3295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung, P. Y. et al. The majority of the genetic risk for Paget's disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum. Genet. 128, 615–626 (2010).

    Article  PubMed  Google Scholar 

  32. Gianfrancesco, F. et al. A nonsynonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease. J. Bone Miner. Res. 27, 443–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Gianfrancesco, F. et al. Giant cell tumor occuring in familial Paget's disease of bone: report of clinical characteristics and linkage analysis of a large pedigree. J. Bone Miner. Res. 28, 341–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Whyte, M. P., Reinus, W. R., Podgornik, M. N. & Mills, B. G. Familial expansile osteolysis (excessive RANK effect) in a 5-generation American kindred. Medicine (Baltimore) 81, 101–121 (2002).

    Article  Google Scholar 

  35. Dickson, G. R. et al. Familial expansile osteolysis: a morphological, histomorphometric and serological study. Bone 12, 331–338 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Whyte, M. P. & Hughes, A. E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res. 17, 26–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Nakatsuka, K., Nishizawa, Y. & Ralston, S. H. Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J. Bone Miner. Res. 18, 1381–1385 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ke, Y.-H., Yue, H., He, J.-W., Liu, Y.-J. & Zhang, Z.-L. Early onset Paget's disease of bone caused by a novel mutation (78dup27) of the TNFRSF11A gene in a Chinese family. Acta Pharmacol. Sin. 30, 1204–1210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 347, 175–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Whyte, M. P. et al. Juvenile Paget's disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone 68, 153–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rea, S. L. et al. Sequestosome 1 mutations in Paget's disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-κB signaling without loss of ubiquitin binding. J. Bone Miner. Res. 24, 1216–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Falchetti, A. et al. Genetic epidemiology of Paget's disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget's disease of bone. Calcif. Tissue Int. 84, 20–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Beyens, G. et al. Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget's disease. Calcif. Tissue Int. 75, 144–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Merchant, A. et al. Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J. Bone Miner. Res. 24, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Matthews, B. G. et al. Absence of somatic SQSTM1 mutations in Paget's disease of bone. J. Clin. Endocrinol. Metab. 94, 691–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Guay-Belanger, S. et al. Detection of SQSTM1/P392L post-zygotic mutations in Paget's disease of bone. Hum. Genet. 134, 53–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

    Article  PubMed  Google Scholar 

  48. Kwok, C. T., Morris, A. & de Belleroche, J. S. Sequestosome-1 (SQSTM1) sequence variants in ALS cases in the UK: prevalence and coexistence of SQSTM1 mutations in ALS kindred with PDB. Eur. J. Hum. Genet. 22, 492–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Marangi, G. & Traynor, B. J. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 1607, 75–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Geetha, T., Vishwaprakash, N., Sycheva, M. & Babu, J. R. Sequestosome 1/p62: across diseases. Biomarkers 17, 99–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Weihl, C. C., Pestronk, A. & Kimonis, V. E. Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul. Disord. 19, 308–315 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Chung, P. Y. et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget's disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol. Genet. Metab. 103, 287–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lucas, G. J. et al. Evaluation of the role of valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone 38, 280–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kimonis, V. E. et al. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am. J. Med. Genet. A 146A, 745–757 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kurihara, N. et al. Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J. Clin. Invest. 117, 133–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Kurihara, N. et al. Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62 (P392L) mutation to Paget's disease. Cell Metab. 13, 23–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daroszewska, A. et al. A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget's disease-like disorder in mice. Hum. Mol. Genet. 20, 2734–2744 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Custer, S. K., Neumann, M., Lu, H., Wright, A. C. & Taylor, J. P. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum. Mol. Genet. 19, 1741–1755 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Badadani, M. et al. VCP associated inclusion body myopathy and Paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS ONE 5, e13183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nalbandian, A. et al. The homozygote VCPR155H/R155H mouse model exhibits accelerated human VCP-associated disease pathology. PLoS ONE 7, e46308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lever, J. H. Paget's disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31, 434–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Spencer, H., O'Sullivan, V. & Sontag, S. J. Exposure to lead, a potentially hazardous toxin: Paget's disease of bone. J. Trace Elem. Exper. Med. 8, 163–171 (1995).

    Google Scholar 

  64. Barker, D. J., Chamberlain, A. T., Detheridge, F. M., Gardner, M. J. & Guyer, P. B. Low lead levels in pagetoid bone. Metab. Bone Dis. Relat. Res. 4, 243–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  65. Adachi, J. D. et al. Is there any association between the presence of bone disease and cumulative exposure to lead? Calcif. Tissue Int. 63, 429–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. O'Driscoll, J. B. & Anderson, D. C. Past pets and Paget's disease. Lancet 2, 919–921 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. O'Driscoll, J. B., Buckler, H. M., Jeacock, J. & Anderson, D. C. Dogs, distemper and osteitis deformans: a further epidemiological study. Bone Miner. 11, 209–216 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Lopez-Abente, G., Morales-Piga, A., Elena-Ibanez, A., Rey-Rey, J. S. & Corres-Gonzalez, J. Cattle, pets, and Paget's disease of bone. Epidemiology 8, 247–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Holdaway, I. M., Ibbertson, H. K., Wattie, D., Scragg, R. & Graham, P. Previous pet ownership and Paget's disease. Bone Miner. 8, 53–58 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Renier, J. C., Fanello, S., Bos, C. & Audran, M. An etiologic study of Paget's disease. Rev. Rhum. Engl. Ed. 63, 606–611 (1996).

    CAS  PubMed  Google Scholar 

  71. Siris, E. S., Kelsey, J. L., Flaster, E. & Parker, S. Paget's disease of bone and previous pet ownership in the United States: dogs exonerated. Int. J. Epidemiol. 19, 455–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Gennari, L. et al. SQSTM1 gene analysis and gene-environment interaction in Paget's disease of bone. J. Bone Miner. Res. 25, 1375–1384 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Harvey, l. et al. Ultrastructural features of the osteoclasts from Paget's disease of bone in relation to a viral etiology. J. Clin. Pathol. 35, 771–779 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Howatson, A. F. & Fornasier, V. L. Microfilaments associated with Paget's disease of bone: comparison with nucleocapsids of measles virus and respiratory syncytial virus. Intervirology 18, 150–159 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. Gherardi, G., LoCascio, V. & Bonucci, E. Fine structure of nuclei and cytoplasm of osteoclasts in Paget's disease of bone. Histopathologie 4, 63–74 (1980).

    Article  CAS  Google Scholar 

  76. Schulz, A., Delling, G., Ringe, J. D. & Ziegler, R. Morbus Paget des knochens: untersuchungen zur ultrastruktur der osteoclasten und ihrer cytopathogenese [German]. Virchow Arch. A Pathol. Anat. Histopathol. 376, 309–328 (1977).

    Article  CAS  Google Scholar 

  77. Mii, Y. et al. Electron microscopic evidence of a viral nature for osteoclast inclusions in Paget's disease of bone. Virchows Arch. 424, 99–104 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Abe, S. et al. Viral behavior of paracrystalline inclusions of osteoclasts of Paget's disease of bone. Ultrastruct. Pathol. 19, 455–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Baublis, J. V. & Payne, F. E. Measles antigen and syncytium formation in brain cell cultures from subacute sclerosing panencephalitis (SSPE). Proc. Soc. Exp. Biol. Med. 129, 593–597 (1968).

    Article  CAS  PubMed  Google Scholar 

  80. Singer, F. R. & Mills, B. G. Giant cell tumor arising in Paget's disease of bone. Recurrences after 36 years. Clin. Orthop. Relat. Res. 293, 293–301 (1993).

    Google Scholar 

  81. Schajowicz, F., Ubios, A. M., Araujo, E. S. & Cabrini, R. L. Virus-like intranuclear inclusions in giant cell tumor of bone. Clin. Orthop. Relat. Res. 201, 247–250 (1985).

    Google Scholar 

  82. Mills, B. G., Yabe, H. & Singer, F. R. Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J. Bone Miner. Res. 3, 101–106 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Beneton, M. N., Harris, S. & Kanis, J. A. Paramyxovirus-like inclusions in two cases of pycnodysostosis. Bone 8, 211–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Bianco, P., Silvestrini, G., Ballanti, P. & Bonucci, E. Paramyxovirus-like nuclear inclusions identical to those of Paget's disease of bone detected in giant cells of primary oxalosis. Virchows Arch. A Pathol. Anat. Histopathol. 421, 427–433 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Rebel, A. et al. Viral antigens in osteoclasts from Paget's disease of bone. Lancet 2, 344–346 (1980).

    Article  CAS  PubMed  Google Scholar 

  86. Mills, B. G. et al. Evidence for both respiratory syncytial virus and measles virus antigens in the osteoclasts of patients with Paget's disease of bone. Clin. Orthop. Relat. Res. 183, 303–311 (1984).

    Google Scholar 

  87. Mills, B. G., Singer, F. R., Weiner, L. P. & Holst, P. A. Immunohistological demonstration of respiratory syncytial virus antigens in Paget disease of bone. Proc. Natl Acad. Sci. USA 78, 1209–1213 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mills, B. G. et al. Multinucleated cells formed in vitro from Paget's bone marrow express viral antigens. Bone 15, 443–448 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Helfrich, M. H. et al. A negative search for a paramyxoviral etiology of Paget's disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J. Bone Miner. Res. 15, 2315–2329 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Basle, M. F., Fournier, J. G., Rozenblatt, S., Rebel, A. & Bouteille, M. Measles virus RNA detected in Paget's disease bone tissue by in situ hybridization. J. Gen. Virol. 67, 907–913 (1986).

    Article  PubMed  Google Scholar 

  91. Reddy, S. V., Singer, F. R. & Roodman, G. D. Bone marrow mononuclear cells from patients with Paget's disease contain measles virus nucleocapsid messenger ribonucleic acid that has mutations in a specific region of the sequence. J. Clin. Endocrinol. Metab. 80, 2108–2111 (1995).

    CAS  PubMed  Google Scholar 

  92. Reddy, S. V., Singer, F. R., Mallette, L. & Roodman, G. D. Detection of measles virus nucleocapsid transcripts in circulating blood cells from patients with Paget disease. J. Bone Miner. Res. 11, 1602–1607 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Friedrichs, W. E. et al. Sequence analysis of measles virus nucleocapsid transcripts in patients with Paget's disease. J. Bone Miner. Res. 17, 145–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Birch, M. A. et al. Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J. Bone Miner. Res. 9, 11–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Ooi, C. G., Walsh, C. A., Gallagher, J. A. & Fraser, W. D. Absence of measles virus and canine distemper virus transcripts in long-term bone marrow cultures from patients with Paget's disease of bone. Bone 27, 417–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Matthews, B. G. et al. Failure to detect measles virus ribonucleic acid in bone cells from patients with Paget's disease. J. Clin. Endocrinol. Metab. 93, 1398–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Kurihara, N., Zhou, H. & Reddy, S. V. Expression of measle virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J. Bone Miner. Res. 21, 446–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Galson, D. & Roodman, G. D. Pathobiology of Paget's disease of bone. J. Bone Metab. 21, 85–98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Teramachi, J. et al. Increased IL-6 expression in osteoclasts is necessary but not sufficient for the development of Paget's disease of bone. J. Bone Miner. Res. 29, 1456–1465 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Sundaram, K., Senn, J., Sandamban, Y., Rao, D. S. & Reddy, S. V. FGF-2 stimulation of RANK ligand expression in Paget's disease of bone. Mol. Endocrinol. 23, 1445–1454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Enders, J. F. Vaccination against measles. Aust. J. Exp. Biol. Med. Sci. 41 (Suppl.), 467–489 (1963).

    Article  Google Scholar 

  102. Filia, A. et al. Analysis of national measles surveillance data in Italy from October 2010 to December 2011 and priorities for reaching the 2015 measles elimination goal. Euro. Surveill. 18, 20480 (2013).

    PubMed  Google Scholar 

  103. Mayoral Cortes, J. et al. Measles outbreak in Andulasia, Spain, January to August 2011. Euro. Surveill. 17, 20300 (2012).

    PubMed  Google Scholar 

  104. Mee, A. P. et al. Detection of canine distemper virus in 100% of Paget's disease samples by in-situ-reverse-transcriptase-polymerase chain reaction. Bone Miner. 23, 171–175 (1998).

    Article  CAS  Google Scholar 

  105. Selby, P. L., Davies, M. & Mee, A. P. Canine distemper virus induces human osteoclastogenesis through NF-κB and sequestosome 1/P62 activation. J. Bone Miner. Res. 21, 1750–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Gordon, M. T. et al. Prevalence of canine distemper antibodies in the pagetic population. J. Med. Virol. 40, 313–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Delage, G. et al. Giant cell pneumonia due to respiratory syncytial virus. Occurrence in severe combined immunodeficiency syndrome. Arch. Pathol. Lab. Med. 108, 623–625 (1984).

    CAS  PubMed  Google Scholar 

  108. Radoycich, G. E., Zuppan, C. W., Weeks, D. A., Krous, H. F. & Langston, C. Patterns of measles pneumonitis. Pediatr. Pathol. 12, 773–786 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Albagha, O. M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat. Genet. 42, 520–524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Albagha, O. M. et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat. Genet. 43, 685–689 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Donath, J. et al. Vitamin D receptor, oestrogen receptor-α and calcium-sensing receptor genotypes, bone mineral density and biochemical markers in Paget's disease of bone. Rheumatology (Oxford) 43, 692–695 (2004).

    Article  CAS  Google Scholar 

  112. Wuyts, W. et al. Evaluation of the role of RANK and OPG genes in Paget's disease of bone. Bone 28, 104–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Michou, L. et al. Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget's disease of bone. Bone 51, 720–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Beauregard, M. et al. Genetic association study of Dickkopf-1 and sclerostin genes with Paget disease of bone. Calcif. Tissue Int. 93, 405–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Christopher, P. J., MacDonald, P. A., Murphy, A. M. & Buckley, P. R. Measles in the 1980s. Med. J. Aust. 2, 488–491 (1983).

    Article  CAS  PubMed  Google Scholar 

  116. Sutherland, I. & Fayers, P. M. Effect of measles vaccination on incidence of measles in the community. Br. Med. J. 1, 698–702 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Reinert, P., Soubeyrand, B. & Gauchoux, R. 35-year measles, mumps, rubella vaccination assessment in France. Arch. Pediatr. 10, 948–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Cullen, R. M. & Walker, W. J. Measles epidemics 1949–1991: the impact of mass immunisation in New Zealand. N. Z. Med. J. 109, 400–402 (1996).

    CAS  PubMed  Google Scholar 

  119. van der Zwan, C. W., Plantinga, A. D., Rumke, H. C. & Conyn-van-Spaendonck, M. A. Measles in the Netherlands; epidemiology and the effect of vaccination [Dutch]. Ned. Tijdschr. Geneeskd. 138, 2390–2395 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.R.S. acknowledges G. Berry, E. Moreno and D. Marzese for technical support, and Eli and Edythe Broad and Lois Rosen for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick R. Singer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singer, F. Paget's disease of bone—genetic and environmental factors. Nat Rev Endocrinol 11, 662–671 (2015). https://doi.org/10.1038/nrendo.2015.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing