Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulin signaling regulating genes: effect on T2DM and cardiovascular risk

Abstract

Type 2 diabetes mellitus (T2DM) is a complex disorder that has a heterogeneous genetic and environmental background. In this Review, we discuss the role of relatively infrequent polymorphisms of genes that regulate insulin signaling (including the K121Q polymorphism of ENPP1, the G972R polymorphism of IRS1 and the Q84R polymorphism of TRIB3) in T2DM and other conditions related to insulin resistance. The biological relevance of these three polymorphisms has been very thoroughly characterized both in vitro and in vivo and the available data indicate that they all affect insulin signaling and action as well as insulin secretion. They also affect insulin-mediated regulation of endothelial cell function. In addition, several reports indicate that the effects of all three polymorphisms on the risk of T2DM and cardiovascular diseases related to insulin resistance depend on the clinical features of the individual, including their body weight and age at disease onset. Thus, these polymorphisms might be used to demonstrate how difficult it is to ascertain the contribution of relatively infrequent genetic variants with heterogeneous effects on disease susceptibility. Unraveling the role of such variants might be facilitated by improving disease definition and focusing on specific subsets of patients.

Key Points

  • Insulin resistance in some individuals is probably the result of abnormalities that occur in the complex insulin signaling pathway; this pathway is modulated by both signaling and inhibitory molecules

  • T2DM is a complex disorder with a background that is likely to be extremely heterogeneous. Not taking this fact into account might exacerbate the difficulties of unraveling T2DM genetic architecture

  • Data obtained on the ENPP1 K121Q, the IRS1 G972R and the TRIB3 Q84R missense, functional variants suggest that they all affect insulin signaling and action as well as insulin secretion

  • These variants also affect insulin-dependent nitric oxide production by endothelial cells, thus supporting a direct deleterious role of insulin resistance on the endothelium

  • Despite such strong biological candidacies, the association of these variants with T2DM and cardiovascular risk does not reach genome-wide statistical significance (maybe due to their heterogeneous effects)

  • Overall, ENPP1 Q121, IRS1 R972 and TRIB3 R84 variants represent a paradigm of how genetic heterogeneity may become an obstacle for unraveling the genetic architecture of complex traits

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association between the K121Q polymorphism of ENPP1 and T2DM.
Figure 2: Interactions between ENPP1 and obesity in modulating the risk of T2DM and cardiovascular events.
Figure 3: The effect of polymorphisms on upstream insulin signaling and insulin action a | (left side) individuals who carry all three wild-type variants (K121 variant of ENPP1, G972 variant of IRS1 and Q84 variant of TRIB3), are characterized by adequate insulin response in both 'classical' target tissues (that is, adipose tissue, liver, skeletal muscle and the endothelium) and pancreatic β-cells.

Similar content being viewed by others

References

  1. Martin, B. C. et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 17, 925–929 (1992).

    Article  Google Scholar 

  2. Kahn, C. R. Banting lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066–1084 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Meigs, J. B. Prediction of type 2 diabetes: the dawn of polygenetic testing for complex disease. Diabetologia 52, 568–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Doria, A., Patti, M. E. & Kahn, C. R. The emerging genetic architecture of type 2 diabetes. Cell Metab 8, 186–200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prokopenko, I., McCarthy, M. I. & Lindgren, C. M. Type 2 diabetes: new genes, new understanding. Trends Genet. 24, 613–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Florez, J. C. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J. Clin. Endocrinol. Metab. 93, 4633–4642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ridderstråle, M. & Groop, L. Genetic dissection of type 2 diabetes. Mol. Cell Endocrinol. 297, 10–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Grarup, N. & Andersen, G. Gene-environment interactions in the pathogenesis of type 2 diabetes and metabolism. Curr. Opin. Clin. Nutr. Metab. Care 10, 420–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ludovico, O. et al. Heterogeneous effect of peroxisome proliferator-activated receptor gamma2 Ala12 variant on type 2 diabetes risk. Obesity 15, 1076–1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell, B. D, Kammerer, C. M., Reinhart, L. J. & Stern, M. P. NIDDM in Mexican-American families. Heterogeneity by age of onset. Diabetes Care 17, 567–573 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Weijnen, C. F., Rich, S. S., Meigs, J. B., Krolewski, A. S. & Warram, J. H. Risk of diabetes in siblings of index cases with type 2 diabetes: implications for genetic studies. Diabet. Med. 19, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Frayling, T. M. et al. Young-onset type 2 diabetes families are the major contributors to genetic loci in the Diabetes UK Warren 2 genome scan and identify putative novel loci on chromosomes 8q21, 21q22, and 22q11. Diabetes 52, 1857–1863 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Owen, K., Ayres, S., Corbett, S. & Hattersley, A. Increased risk of diabetes in first-degree relatives of young-onset type 2 diabetic patients compared with relatives of those diagnosed later. Diabetes Care 25, 636–637 (2002).

    Article  PubMed  Google Scholar 

  14. Florez, J. C. et al. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J. Clin. Endocrinol. Metab. 92, 1502–1509 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Cauchi, S. et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS ONE 3, e2031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Altshuler, D. & Daly, M. Guilt beyond a reasonable doubt. Nat. Genet. 39, 813–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, P. The twentieth century struggle to decipher insulin signaling. Nat. Rev. Mol. Cell Biol. 7, 867–873 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Saltiel, A. R. Putting the brakes on insulin signalling. N. Engl. J. Med. 349, 2560–2562 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Goldfine, I. D. et al. The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocr. Rev. 29, 62–75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Aspinwall, C. A. et al. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2 stores in insulin-stimulated insulin secretion in beta-cells. J. Biol. Chem. 21, 22331–22338 (2000).

    Article  Google Scholar 

  23. Lyssenko, V. et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 54, 166–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Abdul-Ghani, M. A., Williams, K., De Fronzo, R. A. & Stern, M. What is the best predictor of future type 2 diabetes? Diabetes Care 30, 1544–1548 (2007).

    Article  PubMed  Google Scholar 

  25. Altshuler, D. et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freathy, R. M. et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 57, 1419–1426 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Florez, J. C. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51, 1100–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hong, Y. et al. Familial resemblance for glucose and insulin metabolism indices derived from an intravenous glucose tolerance test in Blacks and Whites of the HERITAGE Family Study. Clin. Genet. 60, 22–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Mills, G. W. et al. Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes Diabetologia 47, 732–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Rich, S. S. et al. Identification of quantitative trait loci for glucose homeostasis: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 53, 1866–1875 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Poulsen, P. et al. Heritability of insulin secretion, peripheral and hepatic insulin action, and intracellular glucose partitioning in young and old Danish twins. Diabetes 54, 275–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hsueh, W. C. et al. A genome-wide linkage scan of insulin level-derived traits—The Amish Family Diabetes Study. Diabetes 56, 2643–2648 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Reaven, G. M. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Pizzuti, A. et al. A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 48, 1881–1884 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. McAteer, J. B. et al. The ENPP1 K121Q polymorphism is associated with type 2 diabetes in European populations: Evidence from an updated meta-analysis in 42,042 subjects. Diabetes 57, 1125–1130 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Echwald, S. M. et al. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro. Diabetes 51, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Di Paola, R. et al. A variation in 3′ UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am. J. Hum. Genet. 70, 806–812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mok, A. et al. A single nucleotide polymorphism in protein tyrosine phosphatase PTP-1B is associated with protection from diabetes or impaired glucose tolerance in Oji-Cree. J. Clin. Endocrinol. Metab. 87, 724–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bento, J. L. et al. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53, 3007–3012 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Cheyssac, C. et al. Analysis of common PTPN1 gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med. Genet. 7, 44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Florez, J. C. et al. Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes 54, 1884–1891 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Clausen, J. O. et al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet 346, 397–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Morini, E. et al. IRS1 G972R polymorphism and type 2 diabetes: a paradigm for the difficult ascertainment of the contribution to disease susceptibility of 'low-frequency-low-risk' variants. Diabetologia 52, 1852–1857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubaszek, A. et al. Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 52, 1872–1876 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Susa, S. et al. A functional polymorphism of the TNF-alpha gene that is associated with type 2 DM. Biochem. Biophys. Res. Commun. 369, 943–947 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Huth, C. et al. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants' data from 21 studies. Diabetes 55, 2915–2921 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Marion, E. et al. The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51, 2012–2017 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Kaisaki, P. J. et al. Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 53, 1900–1904 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kagawa, S. et al. Impact of SRC homology 2-containing inositol 5′-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling. J. Clin. Endocrinol. Metab. 90, 2911–2919 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Prudente, S. et al. The functional Q84R polymorphism of mammalian Tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy. Diabetes 54, 2807–2811 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wee, L. C., Bochenski, J., Hu, J., Krowleski, A. S. & Kulkarni, R. N. Effects of TRB3 on β-cell insulin exocytosis. In Proc. 68th Scientific Sessions of the American Diabetes Association, San Francisco, CA, 2008, 186-OR.

    Google Scholar 

  53. Prudente, S. et al. The TRIB3 Q84R polymorphism and risk of early-onset type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 190–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Menzaghi, C., Trischitta, V. & Doria, A. Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 56, 1198–1209 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hivert, M. F. et al. Common variants in the adiponectin gene (ADIPOQ) associated with plasma adiponectin levels, type 2 diabetes, and diabetes-related quantitative traits: the Framingham Offspring Study. Diabetes 57, 3353–3359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hivert, M. F. et al. Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study. Diabetes 58, 750–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stentz, F. B. & Kitabchi, A. E. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. Genomics Proteomics Bioinformatics 5, 216–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Frittitta, L. et al. PC-1 content in skeletal muscle of nonobese, nondiabetic subjects: Relationship to insulin receptor tyrosine kinase and whole body insulin sensitivity. Diabetologia 39, 1190–1195 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Frittitta, L. et al. Increased adipose tissue PC-1 protein content, but not tumor necrosis factor-alpha gene expression, is associated with a reduction of both whole body insulin sensitivity and insulin receptor tyrosine-kinase activity. Diabetologia 40, 282–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Frittitta, L. et al. Elevated PC-1 content in cultured skin fibroblasts correlates with decreased in vivo and in vitro insulin action in non diabetic subjects: Evidence that PC-1 may be an intrinsic factor in impaired insulin receptor signaling. Diabetes 47, 1095–1100 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Costanzo, B. V. et al. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121). Diabetes 50, 831–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Gu, H. F. et al. Association between the human glycoprotein PC-1 gene and elevated glucose and insulin levels in a paired-sibling analysis. Diabetes 49, 1601–1603 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Kubaszek, A., Pihlajamäki, J., Karhapää, P., Vauhkonen, I. & Laakso, M. The K121Q polymorphism of the PC-1 gene is associated with insulin resistance but not with dyslipidemia. Diabetes Care 26, 464–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Baratta, R. et al. Role of the ENPP1 K121Q polymorphism in glucose homeostasis. Diabetes 57, 3360–3364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stolerman, E. S. et al. Haplotype structure of the ENPP1 gene and nominal association of the K121Q missense single nucleotide polymorphism with glycemic traits in the Framingham Heart Study. Diabetes 57, 1971–1977 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rasmussen, S. K. et al. The K121Q variant of the human PC-1 gene is not associated with insulin resistance or type 2 diabetes among Danish Caucasians. Diabetes 49, 1608–1611 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Bacci, S., De Cosmo, S., Prudente, S. & Trischitta, V. ENPP1 gene, insulin resistance and related clinical outcomes. Curr. Opin. Clin. Nutr. Metab. Care 10, 403–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Abate, N. et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 54, 1207–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Bacci, S. et al. The K121Q polymorphism of the ENPP1/PC-1 gene is associated with insulin resistance/atherogenic phenotypes, including earlier onset of type 2 diabetes and myocardial infarction. Diabetes 54, 3021–3025 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. De Cosmo, S. et al. Association of the Q121 variant of ENPP1 gene with decreased kidney function among patients with type 2 diabetes. Am. J. Kidney Dis. 53, 273–280 (2009).

    Article  PubMed  Google Scholar 

  71. Meyre, D. et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat. Genet. 37, 863–867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bochenski, J. et al. New polymorphism of ENPP1 (PC-1) is associated with increased risk of type 2 diabetes among obese individuals. Diabetes 55, 2626–2630 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Cauchi, S. et al. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med. Genet. 22, 45 (2008).

    Article  CAS  Google Scholar 

  74. Moore, A. F. et al. The association of ENPP1 K121Q with diabetes incidence is abolished by lifestyle modification in the diabetes prevention program. J. Clin. Endocrinol. Metab. 94, 449–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Matsuoka, N. et al. Association of K121Q polymorphism in ENPP1 (PC-1) with BMI in Caucasian and African-American adults. Int. J. Obes. 30, 233–237 (2006).

    Article  CAS  Google Scholar 

  76. Prudente, S. et al. The Q121/Q121 genotype of ENPP1/PC-1 is associated with lower BMI in non-diabetic Caucasians. Obesity 15, 1–4 (2007).

    Article  PubMed  Google Scholar 

  77. Morandi, A. et al. The Q121 variant of ENPP1 may protect from childhood overweight/obesity in the Italian population. Obesity 17, 202–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Bluher, M. et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Swinburn, B. A. et al. Insulin resistance associated with lower rates of weight gain in Pima Indians. J. Clin. Invest. 88, 168–173 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liang, J., Fu, M., Ciociola, E., Chandalia, M. & Abate, N. Role of ENPP1 on adipocyte maturation. PLoS ONE 12, e882 (2007).

    Article  CAS  Google Scholar 

  81. Grarup, N. et al. Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects. Diabetologia 49, 2097–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Böttcher, Y. et al. ENPP1 variants and haplotypes predispose to early onset obesity and impaired glucose and insulin metabolism in German obese children. J. Clin. Endocrinol. Metab. 91, 4948–4952 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Meyre, D. et al. ENPP1 K121Q polymorphism and obesity, hyperglycaemia and type 2 diabetes in the prospective DESIR Study. Diabetologia 50, 2090–2096 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. González-Sánchez, J. L. et al. Association of ENPP1 (PC-1) K121Q polymorphism with obesity-related parameters in subjects with metabolic syndrome. Clin. Endocrinol. 68, 724–729 (2008).

    Article  CAS  Google Scholar 

  85. Tanyolaç, S., Mahley, R. W., Hodoglugil, U. & Goldfine, I. D. Gender differences in the relationship of ENPP1/PC-1 variants to obesity in a Turkish population. Obesity 16, 2468–2471 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. El Achhab, Y. et al. Association of the ENPP1 K121Q polymorphism with type 2 diabetes and obesity in the Moroccan population. Diabetes Metab. 35, 37–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Stefan, N. et al. Metabolic effects of the Gly1057Asp polymorphism in IRS-2 and interactions with Obesity. Diabetes 6, 1544–1550 (2003).

    Article  Google Scholar 

  88. Almind, K., Inoue, G., Pedersen, O. & Kahn, C. R. A common 256 amino acid polymorphism in insulin receptor substrate-1 causes 257 impaired insulin signaling. Evidence from transfection studies. J. Clin. Invest. 97, 2569–2575 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hribal, M. L. et al. The Gly3Arg972 amino acid polymorphism in insulin receptor substrate-1 affects glucose metabolism in skeletal muscle cells. J. Clin. Endocrinol. Metab. 85, 2004–2013 (2000).

    CAS  PubMed  Google Scholar 

  90. Sesti, G. et al. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 15, 2099–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Porzio, O. et al. The Gly9723Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells. J. Clin. Invest. 104, 357–364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marchetti, P. et al. Insulin secretory function is impaired in isolated human islets carrying the 260 Gly9723Arg IRS-1 polymorphism. Diabetes 51, 1419–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Marini, M. A. et al. The Arg972 variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients. J. Clin. Endocrinol. Metab.88, 3368–3371 (2003).

    Article  CAS  Google Scholar 

  94. Stumvoll, M. et al. The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose-tolerant humans. Diabetes 50, 882–885 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Hribal, M. L. et al. Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion. J. Cell. Mol. Med. 12, 2096–2106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeggini, E. et al. Association studies of insulin receptor substrate 1 gene (IRS1) variants in type 2 diabetes samples enriched for family history and early age of onset. Diabetes 53, 3319–3322 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Florez, J. C. et al. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes 53, 3313–3318 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. van Dam, R. M. et al. The insulin receptor substrate-1 Gly972Arg polymorphism is not associated with Type 2 diabetes mellitus in two population-based studies. Diabet. Med. 21, 752–758 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Jellema, A., Zeegers, M. P., Feskens, E. J., Dagnelie, P. C. & Mensink, R. P. Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 46, 990–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Körner, A., Berndt, J., Stumvoll, M., Kiess, W. & Kovacs, P. TCF7L2 gene polymorphisms confer an increased risk for early impairment of glucose metabolism and increased height in obese children. J. Clin. Endocrinol. Metab. 92, 1956–1960 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Myocardial Infarction Genetics Consortium et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

  102. Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 6, 1574–1577 (2003).

    Article  CAS  Google Scholar 

  103. Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Iynedjian, P. B. et al. Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes. Biochem. J. 386, 113–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Andreozzi, F. et al. TRIB3 R84 variant is associated with impaired insulin mediated nitric oxide production in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 1355–1360 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Gong, H. P. et al. TRIB3 Functional Q84R polymorphism is a risk factor for metabolic syndrome and carotid atherosclerosis. Diabetes Care 32, 1311–1313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rutter, M. K. et al. Insulin resistance, the metabolic syndrome and incident cardiovascular events in the Framingham offspring study. Diabetes 54, 3252–3257 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Alexander, C. M. et al. NCEP-defined metabolic Syndrome, diabetes and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, J. et al. The metabolic syndrome and chronic kidney disease in U. S. adults. Ann. Intern. Med. 140, 167–174 (2004).

    Article  PubMed  Google Scholar 

  110. De Cosmo, S. et al. Increased urinary albumin excretion, insulin resistance, and related cardiovascular risk factors in patients with type 2 diabetes: evidence of a sex-specific association. Diabetes Care 28, 910–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. De Cosmo, S. et al. Insulin resistance and the cluster of abnormalities related to the metabolic syndrome are associated with reduced glomerular filtration rate in patients with type 2 diabetes. Diabetes Care 29, 432–434 (2006).

    Article  PubMed  Google Scholar 

  112. Howard, G. et al. Insulin sensitivity and atherosclerosis. Circulation 93, 1809–1817 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Muniyappa, R., Montagnani, M., Koh, K. K. & Quon, M. J. Cardiovascular actions of insulin. Endocr. Rev. 28, 463–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Endler, G. et al. The K121Q polymorphism in the plasma cell membrane glycoprotein 1 gene predisposes to early myocardial infarction. J. Mol. Med. 80, 791–795 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Baroni, M. G. et al. A common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 19, 2975–2980 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Bacci, S. et al. ENPP1 Q121 variant, increased pulse pressure and reduced insulin signaling, and nitric oxide synthase activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 1678–1683 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Strohmer, B., Reiter, R., Hölzl, B. & Paulweber, B. Lack of association of the Gly972Arg mutation of the insulin receptor substrate-1 gene with coronary artery disease in the Austrian population. J. Intern. Med. 255, 146–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. De Cosmo, S. et al. Glutamine to arginine substitution at amino acid 84 of mammalian tribbles homolog TRIB3 and CKD in whites with type 2 diabetes. Am. J. Kidney Dis. 50, 688–689 (2007).

    Article  PubMed  Google Scholar 

  119. Panza, J. A., Quyyumi, A. A, Brush, J. E. Jr & Epstein, S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 323, 22–27 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Pinkney, J. H., Stehouwer, C. D., Coppack, S. W. & Yudkin, J. S. Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes 46 (Suppl. 2), S9–S13 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Zeng, G. et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101, 1539–1545 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Kuboki, K. et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101, 676–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Howard, G. et al. Insulin sensitivity and atherosclerosis. Circulation 93, 1809–1817 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Federici, M. et al. G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation 109, 399–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Risch, N. & Teng, J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 8, 1273–1288 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Li, M., Boehnke, M. & Abecasis, G. R. Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am. J. Hum. Genet. 78, 778–792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Timpson, N. J. et al. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 58, 505–510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ober, C., Loisel, D. A. & Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 9, 911–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Klaman, L. D. et al. Increased energy expenditure decreased adiposity and tissue-specific insulin sensitivity in protein tyrosine phosphatase 1B deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Prudente, S. et al. A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes 56, 1468–1474 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Shifman, S. et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 4, e28 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Helgadottir, A. et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat. Genet. 38, 68–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kaput, J. & Dawson, K. Complexity of type 2 diabetes mellitus data sets emerging from nutrigenomic research: a case for dimensionality reduction? Mutat. Res. 622, 19–32 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luan, J. et al. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes 50, 686–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Franks, P. W. et al. Does peroxisome proliferator-activated receptor gamma genotype (Pro12ala) modify the association of physical activity and dietary fat with fasting insulin level? Metabolism 53, 11–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Memisoglu, A. et al. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum. Mol. Genet. 12, 2923–2929 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Salanti, G. et al. Underlying genetic models of inheritance in established type 2 diabetes associations. Am. J. Epidemiol. 170, 537–545 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Motsinger, A. A. & Ritchie, M. D. Multifactor dimensionality reduction: an analysis strategy for modeling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum. Genomics 2, 318–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ritchie, M. D. Bioinformatics approaches for detecting gene-gene and gene-environment interactions in studies of human disease. Neurosurg. Focus 19, E2 (2005).

    Article  PubMed  Google Scholar 

  143. Perry, J. R. et al. Interrogating type 2 diabetes genome-wide association data using biological pathway-based approach. Diabetes 58, 1463–1467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sookoian, S., Gianotti, T. F., Schuman, M. & Pirola, C. J. Gene prioritization based on biological plausibility over genome wide association studies renders new loci associated with type 2 diabetes. Genet. Med. 11, 338–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. The International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 749–752 (2009).

  146. Biddinger, S. B. &. Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Ando, A. et al. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J. 13, 3033–3038 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bernal-Mizrachi, E. et al. Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J. Clin. Invest. 114, 928–936 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039–1057 (1979).

Download references

Acknowledgements

This work was partly supported by the Italian Ministry of Health (“Ricerca Corrente 2007, 2008 and 2009” to S. P. and V. T.) and by Fondazione Roma (“Sostegno alla ricerca scientifica biomedica 2008” to V. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Trischitta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudente, S., Morini, E. & Trischitta, V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 5, 682–693 (2009). https://doi.org/10.1038/nrendo.2009.215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing