Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems pathology—taking molecular pathology into a new dimension

Abstract

The wealth of morphological, histological, and molecular data from human cancers available to pathologists means that pathology is poised to become a truly quantitative systems science. By measuring morphological parameters such as tumor stage and grade, and by measuring molecular biomarkers such as hormone receptor status, pathologists have sometimes accurately predicted what will happen to a patient's tumor. While 'omic' technologies have seemingly improved prognostication and prediction, some molecular 'signatures' are not useful in clinical practice because of the failure to independently validate these approaches. Many associations between gene 'signatures' and clinical response are correlative rather than mechanistic, and such associations are poor predictors of how cellular biochemical networks will behave in perturbed, diseased cells. Using systems biology, the dynamics of reactions in cells and the behavior between cells can be integrated into models of cancer. The challenge is how to integrate multiple data from the clinic into tractable models using mathematical models and systems biology, and how to make the resultant model sufficiently robust to be of practical use. We discuss the difficulties in using mathematics to model cancer, and review some approaches that may be used to allow systems biology to be successfully applied in the clinic.

Key Points

  • Morphological assessment by histopathology can be a good surrogate for underlying molecular biology, which may be used in treatment decision-making

  • Drug mechanisms of action and signaling pathways that may not be understood fully may be predicted by mathematical models

  • Cancer is dynamic, complex, and heterogeneous, and therefore requires integration of molecular biology and pathology data in new predictive frameworks that embrace the dynamic nature of the disease

  • Developments in mathematics and quantitative pathology provide the foundation for this new predictive framework to aid in the diagnosis, prognostication, and prediction of response in patients with cancer

  • Mathematical models can be used to predict drug responses under a given set of conditions or to predict what combinations of drug could result in a given cell fate

  • Systems biology has been successful in predicting molecular responses in well-described cancer pathways (for example, mitogen activated protein kinase pathway) or in physiology, but has not yet been applied to the cancer clinic

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation of molecular activity in breast cancer using an ordinary differential based model.
Figure 2: Network interactions in cancer derived from quantitative protein time-series data (obtained in vitro using the S-systems Biochemical Systems Theory approach).
Figure 3: New analytical tools and biological models for systems biology.

Similar content being viewed by others

References

  1. Henney, A. & Superti-Furga, G. A network solution. Nature 455, 730–731 (2008).

    Article  CAS  Google Scholar 

  2. Belardinelli, L., Shryock, J. C. & Fraser, H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 92 (Suppl. 4), iv6–iv14 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Noble, D. & Noble, P. J. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart 92 (Suppl. 4), iv1–iv5 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho, C. R., Labow, M., Reinhardt, M., van Oostrum, J. & Peitsch, M. C. The application of systems biology to drug discovery. Curr. Opin. Chem. Biol. 10, 294–302 (2006).

    Article  CAS  Google Scholar 

  5. FDA Approves New Treatment for Chest Pain, FDA [online], (2009).

  6. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  Google Scholar 

  7. Valabrega, G., Montemurro, F. & Aglietta, M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol. 18, 977–984 (2007).

    Article  CAS  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  9. Sobin, L. H. & Wittekind, C. H. UICC: TNM Classification of Malignant Tumors, 6th edn (Wiley-Liss, New York, 2002).

    Google Scholar 

  10. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  Google Scholar 

  11. Reis-Filho, J. S. et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology 49, 10–21 (2006).

    Article  CAS  Google Scholar 

  12. Reis-Filho, J. S. & Tutt, A. N. Triple negative tumours: a critical review. Histopathology 52, 108–118 (2008).

    Article  CAS  Google Scholar 

  13. Gusterson, B. Do 'basal-like' breast cancers really exist? Nat. Rev. Cancer 9, 128–134 (2009).

    Article  CAS  Google Scholar 

  14. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  15. Tan, D. S. & Reis-Filho, J. S. Comparative genomic hybridisation arrays: high-throughput tools to determine targeted therapy in breast cancer. Pathobiology 75, 63–74 (2008).

    Article  CAS  Google Scholar 

  16. Turner, N. C. & Reis-Filho, J. S. Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25, 5846–5853 (2006).

    Article  CAS  Google Scholar 

  17. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  Google Scholar 

  18. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).

    Article  CAS  Google Scholar 

  19. Faratian, D. & Bartlett, J. Predictive markers in breast cancer—the future. Histopathology 52, 91–98 (2008).

    Article  CAS  Google Scholar 

  20. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  21. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    Article  CAS  Google Scholar 

  22. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  23. Smith, I. et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369, 29–36 (2007).

    Article  CAS  Google Scholar 

  24. Faratian, D. Moodie, S. L., Harrison D. J. & Goryanin, I. Dynamic computational modeling in the search for better breast cancer drug therapy. Pharmacogenomics 8, 1757–1761 (2007).

    Article  CAS  Google Scholar 

  25. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  Google Scholar 

  26. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  27. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  28. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  29. Kholodenko, B. N. & Kolch, W. Giving space to cell signaling. Cell 133, 566–567 (2008).

    Article  CAS  Google Scholar 

  30. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  Google Scholar 

  31. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004).

    Article  CAS  Google Scholar 

  32. Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).

    Article  CAS  Google Scholar 

  33. Sauro, H. M. & Bergmann, F. T. Standards and ontologies in computational systems biology. Essays Biochem. 45, 211–222 (2008).

    Article  CAS  Google Scholar 

  34. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  Google Scholar 

  35. Fuss, H., Dubitzky, W., Downes, C. S. & Kurth, M. J. Mathematical models of cell cycle regulation. Brief. Bioinform. 6, 163–177 (2005).

    Article  CAS  Google Scholar 

  36. Hatakeyama, M. et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373, 451–463 (2003).

    Article  CAS  Google Scholar 

  37. Hendriks, B. S. et al. Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Syst. Biol. (Stevenage) 153, 22–33 (2006).

    Article  CAS  Google Scholar 

  38. Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999).

    Article  CAS  Google Scholar 

  39. Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004).

    Article  CAS  Google Scholar 

  40. Shankaran, H., Wiley, H. S. & Resat, H. Modeling the effects of HER/ErbB1–3 coexpression on receptor dimerization and biological response. Biophys. J. 90, 3993–4009 (2006).

    Article  CAS  Google Scholar 

  41. Steuer, R. Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry 68, 2139–2151 (2007).

    Article  CAS  Google Scholar 

  42. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  43. Janes, K. A. et al. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310, 1646–1653 (2005).

    Article  CAS  Google Scholar 

  44. Demin, O. & Goryanin, I. Kinetic Modelling in Systems Biology. (Chapman and Hall/CRC, Boca Raton, FL, 2008).

    Book  Google Scholar 

  45. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  Google Scholar 

  46. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  Google Scholar 

  47. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  Google Scholar 

  48. Clyde, R. G., Bown, J. L., Hupp, T. R., Zhelev, N. & Crawford, J. W. The role of modelling in identifying drug targets for diseases of the cell cycle. J. R. Soc. Interface 3, 617–627 (2006).

    Article  CAS  Google Scholar 

  49. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning. (Addison-Wesley, Reading, MA, 1989).

    Google Scholar 

  50. Noble, D. Systems biology and the heart. Biosystems 83, 75–80 (2006).

    Article  Google Scholar 

  51. Brewer, D., Barenco, M., Callard, R., Hubank, M. & Stark, J. Fitting ordinary differential equations to short time course data. Philos. Transact. A Math. Phys. Eng. Sci. 366, 519–544 (2008).

    Article  Google Scholar 

  52. Sorribas, A. & Savageau, M. A. A comparison of variant theories of intact biochemical systems. I. Enzyme–enzyme interactions and biochemical systems theory. Math. Biosci. 94, 161–193 (1989).

    Article  CAS  Google Scholar 

  53. Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243–249 (2002).

    Article  CAS  Google Scholar 

  54. Savageau, M. A. & Voit, E. O. Power-law approach to modeling biological systems. 1. Theory. J. Ferment. Technol. 60, 221–228 (1982).

    CAS  Google Scholar 

  55. Voit, E. O. Models-of-data and models-of-processes in the post-genomic era. Math. Biosci. 180, 263–274 (2002).

    Article  Google Scholar 

  56. Bosl, W. J. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Syst. Biol. 1, 13 (2007).

    Article  Google Scholar 

  57. Kirby, J., Heath, P. R., Shaw, P. J. & Hamdy, F. C. Gene expression assays. Adv. Clin. Chem. 44, 247–292 (2007).

    Article  CAS  Google Scholar 

  58. Kennett, J. Y., Watson, S. K., Saprunoff, H., Heryet, C. & Lam, W. L. Technical demonstration of whole genome array comparative genomic hybridization. J. Vis. Exp. 5, 870 (2008).

    Google Scholar 

  59. Edwards, R. A. Laser capture microdissection of mammalian tissue. J. Vis. Exp. 309 (2007).

  60. Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat. Med. 8, 1323–1327 (2002).

    Article  CAS  Google Scholar 

  61. Pan, S. et al. Mass spectrometry based targeted protein quantification: methods and applications. J. Proteome Res. 8, 787–797 (2008).

    Article  Google Scholar 

  62. Tibes, R. et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther. 5, 2512–2521 (2006).

    Article  CAS  Google Scholar 

  63. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  CAS  Google Scholar 

  64. Edward, M. Melanoma cell-derived factors stimulate glycosaminoglycan synthesis by fibroblasts cultured as monolayers and within contracted collagen lattices. Br. J. Dermatol. 144, 465–470 (2001).

    Article  CAS  Google Scholar 

  65. Dixon, J. M. The scientific value of preoperative studies and how they can be used. Breast Cancer Res. Treat. 87 (Suppl. 1), S19–S26 (2004).

    Article  CAS  Google Scholar 

  66. Dowsett, M. et al. Proliferation and apoptosis as markers of benefit in neoadjuvant endocrine therapy of breast cancer. Clin. Cancer Res. 12, 1024s–1030s (2006).

    Article  CAS  Google Scholar 

  67. Dowsett, M. et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl Cancer Inst. 99, 167–170 (2007).

    Article  CAS  Google Scholar 

  68. Alberts, D. S. et al. Intraperitoneal therapy for stage III ovarian cancer: a therapy whose time has come! J. Clin. Oncol. 20, 3944–3946 (2002).

    Article  Google Scholar 

  69. Nagtegaal, I. D. et al. Radiation induces different changes in expression profiles of normal rectal tissue compared with rectal carcinoma. Virchows Arch. 446, 127–135 (2005).

    Article  CAS  Google Scholar 

  70. Dolled-Filhart, M. et al. Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res. 66, 5487–5494 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Breast Cancer Campaign and Breakthrough Breast Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Faratian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faratian, D., Clyde, R., Crawford, J. et al. Systems pathology—taking molecular pathology into a new dimension. Nat Rev Clin Oncol 6, 455–464 (2009). https://doi.org/10.1038/nrclinonc.2009.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing