Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcification in atherosclerosis

Abstract

Coronary calcification has long been known to occur as a part of the atherosclerotic process, although whether it is a marker of plaque stability or instability is still a topic of considerable debate. Coronary calcification is an active process resembling bone formation within the vessel wall and, with the advances in CT technology of the past decade, can be easily quantified and expressed as a coronary artery calcium (CAC) score. The extent of calcium is thought to reflect the total coronary atherosclerotic burden, which has generated interest in using CAC as a marker of risk of cardiovascular events. The current consensus is that large amounts of CAC identify a highly vulnerable patient rather than a vulnerable plaque or vulnerable vessel. Indeed, CAC has incremental prognostic value beyond traditional risk factors in various subsets of the population. Furthermore, whereas the presence of CAC is associated with increased risk, a zero CAC score predicts excellent short-term to mid-term prognosis, even in high-risk patients. The advent of CT angiography has perhaps clouded the importance of CAC as a long-term marker of risk, as opposed to the presence of luminal stenoses that are associated with a more immediate risk of events.

Key Points

  • Calcification of the coronary arteries occurs via an active process that resembles bone formation and is under the control of complex enzymatic and cellular pathways

  • Coronary artery calcium screening is easily performed with multidetector CT; the total coronary calcium score is an index of the total coronary atherosclerotic burden

  • Coronary artery calcium is a better predictor of cardiovascular events than the Framingham risk score and can help to reclassify asymptomatic individuals into high-risk or low-risk categories

  • The best available data on the usefulness of coronary calcium measurement for refinement of cardiovascular risk prediction is in intermediate-risk individuals by use of current risk-prediction algorithms

  • In symptomatic patients, the presence of coronary artery calcium may help to distinguish those with obstructive coronary artery disease from those with no significant disease

  • Rapid coronary calcium progression is associated with poor prognosis; however, data is insufficient at this time to recommend serial calcium score measurements in the general population

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential cranio-caudal axial images of the heart demonstrating calcium deposition in all coronary arteries.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Budoff, M. J. et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114, 1761–1791 (2006).

    PubMed  Google Scholar 

  2. Qiao, J. H. et al. Calcification of the coronary arteries in the absence of atherosclerotic plaque. Mayo Clin. Proc. 80, 807–809 (2005).

    PubMed  Google Scholar 

  3. Tong, L. L., Mehrotra, R., Shavelle, D. M., Budoff, M. & Adler, S. Poor correlation between coronary artery calcification and obstructive coronary artery disease in an end-stage renal disease patient. Hemodial. Int. 12, 16–22 (2008).

    PubMed  Google Scholar 

  4. Micheletti, R. G., Fishbein, G. A., Currier, J. S., Singer, E. J. & Fishbein, M. C. Calcification of the internal elastic lamina of coronary arteries. Mod. Pathol. 21, 1019–1028 (2008).

    PubMed  Google Scholar 

  5. Johnson, R. C., Leopold, J. A. & Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ. Res. 99, 1044–1059 (2006).

    CAS  PubMed  Google Scholar 

  6. Doherty, T. M. et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr. Rev. 25, 629–672 (2004).

    CAS  PubMed  Google Scholar 

  7. Aikawa, E. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841–2850 (2007).

    CAS  PubMed  Google Scholar 

  8. Qin, X., Corriere, M. A., Matrisian, L. M. & Guzman, R. J. Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler. Thromb. Vasc. Biol. 26, 1510–1516 (2006).

    CAS  PubMed  Google Scholar 

  9. Proudfoot, D. et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055–1062 (2000).

    CAS  PubMed  Google Scholar 

  10. Cola, C., Almeida, M., Li, D., Romeo, F. & Mehta, J. L. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem. Biophys. Res. Commun. 320, 424–427 (2004).

    CAS  PubMed  Google Scholar 

  11. Tyson, K. L. et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 23, 489–494 (2003).

    CAS  PubMed  Google Scholar 

  12. Huang, H. et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103, 1051–1056 (2001).

    CAS  PubMed  Google Scholar 

  13. Beckman, J. A., Ganz, J., Creager, M. A., Ganz, P. & Kinlay, S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler. Thromb. Vasc. Biol. 21, 1618–1622 (2001).

    CAS  PubMed  Google Scholar 

  14. Fitzgerald, P. J., Ports, T. A. & Yock, P. G. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation 86, 64–70 (1992).

    CAS  PubMed  Google Scholar 

  15. Schmermund, A. & Erbel, R. Unstable coronary plaque and its relation to coronary calcium. Circulation 104, 1682–1687 (2001).

    CAS  PubMed  Google Scholar 

  16. Mosseri, M., Satler, L. F., Pichard, A. D. & Waksman, R. Impact of vessel calcification on outcomes after coronary stenting. Cardiovasc. Revasc. Med. 6, 147–153 (2005).

    PubMed  Google Scholar 

  17. Veress, A. I., Cornhill, J. F., Herderick, E. E. & Thomas, J. D. Age-related development of atherosclerotic plaque stress: a population-based finite-element analysis. Coron. Artery Dis. 9, 13–19 (1998).

    CAS  PubMed  Google Scholar 

  18. Ehara, S. et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110, 3424–3429 (2004).

    Google Scholar 

  19. Motoyama, S. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 319–326 (2007).

    PubMed  Google Scholar 

  20. Lavi, S. et al. Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart doi:hrt.2009.166017v1

  21. Ramadan, M. M. et al. Evaluation of coronary calcium score by multidetector computed tomography in relation to endothelial function and inflammatory markers in asymptomatic individuals. Circ. J. 72, 778–785 (2008).

    CAS  PubMed  Google Scholar 

  22. Venkitachalam, L. et al. Elevated pulse wave velocity increases the odds of coronary calcification in overweight postmenopausal women. Am. J. Hypertens. 20, 469–475 (2007).

    PubMed  Google Scholar 

  23. Wang, L. et al. Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 48, 1018–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Agatston, A. S. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990).

    CAS  PubMed  Google Scholar 

  25. Callister, T. Q. et al. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208, 807–814 (1998).

    CAS  PubMed  Google Scholar 

  26. Rumberger, J. A. & Kaufman, L. A rosetta stone for coronary calcium risk stratification: agatston, volume, and mass scores in 11,490 individuals. AJR Am. J. Roentgenol. 181, 743–748 (2003).

    Google Scholar 

  27. Becker, C. R. et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am. J. Roentgenol. 176, 1295–1298 (2001).

    CAS  PubMed  Google Scholar 

  28. Budoff, M. J., Mao, S., Zalace, C. P., Bakhsheshi, H. & Oudiz, R. J. Comparison of spiral and electron beam tomography in the evaluation of coronary calcification in asymptomatic persons. Int. J. Cardiol. 77, 181–188 (2001).

    CAS  PubMed  Google Scholar 

  29. McCollough, C. H. et al. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology 243, 527–538 (2007).

    PubMed  Google Scholar 

  30. Rumberger, J. A., Simons, D. B., Fitzpatrick, L. A., Sheedy, P. F. & Schwartz, R. S. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92, 2157–2162 (1995).

    CAS  PubMed  Google Scholar 

  31. Simons, D. B. et al. Noninvasive definition of anatomic coronary artery disease by ultrafast computed tomographic scanning: a quantitative pathologic comparison study. J. Am. Coll. Cardiol. 20, 1118–1126 (1992).

    CAS  PubMed  Google Scholar 

  32. Greenland, P. et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J. Am. Coll. Cardiol. 49, 378–402 (2007).

    PubMed  Google Scholar 

  33. Cheng, V. Y. et al. Presence and severity of noncalcified coronary plaque on 64-slice computed tomographic coronary angiography in patients with zero and low coronary artery calcium. Am. J. Cardiol. 99, 1183–1186 (2007).

    PubMed  Google Scholar 

  34. Schmermund, A. et al. Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation 96, 1461–1499 (1997).

    CAS  PubMed  Google Scholar 

  35. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    CAS  PubMed  Google Scholar 

  36. The BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

  37. Naghavi, M. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108, 1772–1778 (2003).

    PubMed  Google Scholar 

  38. Kalia, N. K. et al. Visualizing coronary calcium is associated with improvements in adherence to statin therapy. Atherosclerosis 185, 394–399 (2006).

    CAS  PubMed  Google Scholar 

  39. Detrano, R. C. et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation 99, 2633–2638 (1999).

    CAS  PubMed  Google Scholar 

  40. Park, R. et al. Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 106, 2073–2077 (2002).

    CAS  PubMed  Google Scholar 

  41. Raggi, P. et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101, 850–855 (2000).

    CAS  PubMed  Google Scholar 

  42. Arad, Y., Spadaro, L. A., Goodman, K., Newstein, D. & Guerci, A. D. Prediction of coronary events with electron beam computed tomography. J. Am. Coll. Cardiol. 36, 1253–1260 (2000).

    CAS  PubMed  Google Scholar 

  43. Shaw, L. J., Raggi, P., Schisterman, E., Berman, D. S. & Callister, T. Q. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228, 826–833 (2003).

    PubMed  Google Scholar 

  44. Arad, Y., Goodman, K. J., Roth, M., Newstein, D. & Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J. Am. Coll. Cardiol. 46, 158–165 (2005).

    CAS  PubMed  Google Scholar 

  45. LaMonte, M. J. et al. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am. J. Epidemiol. 162, 421–429 (2005).

    PubMed  Google Scholar 

  46. Wong, N. D. et al. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am. J. Cardiol. 86, 495–498 (2000).

    CAS  PubMed  Google Scholar 

  47. Kondos, G. T. et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107, 2571–2576 (2003).

    PubMed  Google Scholar 

  48. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M. & Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291, 210–215 (2004).

    CAS  PubMed  Google Scholar 

  49. Becker, A., Leber, A., Becker, C. & Knez, A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am. Heart J. 155, 154–160 (2008).

    PubMed  Google Scholar 

  50. Budoff, M. J. et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 49, 1860–1870 (2007).

    PubMed  Google Scholar 

  51. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008).

    CAS  PubMed  Google Scholar 

  52. Taylor, A. J. et al. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J. Am. Coll. Cardiol. 46, 807–814 (2005).

    CAS  PubMed  Google Scholar 

  53. Vliegenthart, R. et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 112, 572–577 (2005).

    PubMed  Google Scholar 

  54. Raggi, P. et al. Coronary artery calcium to predict all-cause mortality in elderly men and women. J. Am. Coll. Cardiol. 52, 17–23 (2008).

    PubMed  Google Scholar 

  55. Raggi, P., Shaw, L. J., Berman, D. S. & Callister, T. Q. Gender-based differences in the prognostic value of coronary calcification. J. Womens Health (Larchmt) 13, 273–283 (2004).

    Google Scholar 

  56. Lakoski, S. G. et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA). Arch. Intern. Med. 167, 2437–2442 (2007).

    PubMed  Google Scholar 

  57. Raggi, P., Shaw, L. J., Berman, D. S. & Callister, T. Q. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J. Am. Coll. Cardiol. 43, 1663–1669 (2004).

    CAS  PubMed  Google Scholar 

  58. Shareghi, S. et al. Prognostic significance of zero coronary calcium scores on cardiac computed tomography. J. Cardiovasc. Comput. Tomogr. 1, 155–159 (2007).

    PubMed  Google Scholar 

  59. Michos, E. D. et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis 184, 201–206 (2006).

    CAS  PubMed  Google Scholar 

  60. Bellasi, A. et al. Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am. J. Cardiol. 100, 409–414 (2007).

    CAS  PubMed  Google Scholar 

  61. Iwasaki, K., Matsumoto, T., Aono, H., Furukawa, H. & Samukawa, M. Prevalence of subclinical atherosclerosis in asymptomatic diabetic patients by 64-slice computed tomography. Coron. Artery Dis. 19, 195–201 (2008).

    PubMed  Google Scholar 

  62. Becker, A. et al. Predictive value of coronary calcifications for future cardiac events in asymptomatic patients with diabetes mellitus: a prospective study in 716 patients over 8 years. BMC Cardiovasc. Disord. 8, 27 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Anand, D. V., Lim, E., Lahiri, A. & Bax, J. J. The role of non-invasive imaging in the risk stratification of asymptomatic diabetic subjects. Eur. Heart J. 27, 905–912 (2006).

    PubMed  Google Scholar 

  64. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    CAS  PubMed  Google Scholar 

  65. Sigrist, M., Bungay, P., Taal, M. W. & McIntyre, C. W. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol. Dial. Transplant. 21, 707–714 (2006).

    PubMed  Google Scholar 

  66. Baber, U. et al. Non-traditional risk factors predict coronary calcification in chronic kidney disease in a population-based cohort. Kidney Int. 73, 615–621 (2008).

    CAS  PubMed  Google Scholar 

  67. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    CAS  PubMed  Google Scholar 

  68. Raggi, P. et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J. Am. Coll. Cardiol. 39, 695–701 (2002).

    PubMed  Google Scholar 

  69. Matsuoka, M. et al. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin. Exp. Nephrol. 8, 54–58 (2004).

    PubMed  Google Scholar 

  70. Oh, J. et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106, 100–105 (2002).

    PubMed  Google Scholar 

  71. Chertow, G. M. et al. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1489–1496 (2004).

    PubMed  Google Scholar 

  72. Chertow, G. M., Burke, S. K. & Raggi, P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 62, 245–252 (2002).

    CAS  PubMed  Google Scholar 

  73. Guerin, A. P., London, G. M., Marchais, S. J. & Metivier, F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol. Dial. Transplant. 15, 1014–1021 (2000).

    CAS  PubMed  Google Scholar 

  74. Nasir, K. et al. Family history of premature coronary heart disease and coronary artery calcification: Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 116, 619–626 (2007).

    PubMed  Google Scholar 

  75. De Backer, G. et al. European guidelines on cardiovascular disease prevention in clinical practice: Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 24, 1601–1610 (2003).

    PubMed  Google Scholar 

  76. Raggi, P., Cooil, B. & Callister, T. Q. Use of electron beam tomography data to develop models for prediction of hard coronary events. Am. Heart J. 141, 375–382 (2001).

    CAS  PubMed  Google Scholar 

  77. Budoff, M. J. et al. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105, 1791–1796 (2002).

    PubMed  Google Scholar 

  78. Laudon, D. A. et al. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann. Emerg. Med. 33, 15–21 (1999).

    CAS  PubMed  Google Scholar 

  79. Georgiou, D. et al. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J. Am. Coll. Cardiol. 38, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  80. Becker, A. et al. Multislice computed tomography for determination of coronary artery disease in a symptomatic patient population. Int. J. Cardiovasc. Imaging 23, 361–367 (2007).

    PubMed  Google Scholar 

  81. O'Rourke, R. A. et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 102, 126–140 (2000).

    CAS  PubMed  Google Scholar 

  82. Berman, D. S. et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J. Am. Coll. Cardiol. 44, 923–930 (2004).

    CAS  PubMed  Google Scholar 

  83. Shavelle, D. M. et al. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. J. Am. Coll. Cardiol. 36, 32–38 (2000).

    CAS  PubMed  Google Scholar 

  84. Kajinami, K., Seki, H., Takekoshi, N. & Mabuchi, H. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron beam computed tomography: comparison with electrocardiographic and thallium exercise stress test results. J. Am. Coll. Cardiol. 26, 1209–1221 (1995).

    CAS  PubMed  Google Scholar 

  85. Yao, Z. et al. A comparison of 99mTc-MIBI myocardial SPET with electron beam computed tomography in the assessment of coronary artery disease. Eur. J. Nucl. Med. 24, 1115–1120 (1997).

    CAS  PubMed  Google Scholar 

  86. Esteves, F. P. et al. Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease. Nucl. Med. Commun. 29, 674–678 (2008).

    PubMed  Google Scholar 

  87. Esteves, F. P., Sanyal, R., Santana, C. A., Shaw, L. & Raggi, P. Potential impact of noncontrast computed tomography as gatekeeper for myocardial perfusion positron emission tomography in patients admitted to the chest pain unit. Am. J. Cardiol. 101, 149–152 (2008).

    PubMed  Google Scholar 

  88. He, Z. X. et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 101, 244–251 (2000).

    CAS  PubMed  Google Scholar 

  89. Budoff, M. J. & Raggi, P. Coronary artery disease progression assessed by electron-beam computed tomography. Am. J. Cardiol. 88, 46E–50E (2001).

    CAS  PubMed  Google Scholar 

  90. Gopal, A. et al. Coronary calcium progression rates with a zero initial score by electron beam tomography. Int. J. Cardiol. 117, 227–231 (2007).

    PubMed  Google Scholar 

  91. Raggi, P. et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am. J. Cardiol. 92, 827–829 (2003).

    PubMed  Google Scholar 

  92. Rasouli, M. L. et al. Plasma homocysteine predicts progression of atherosclerosis. Atherosclerosis 181, 159–165 (2005).

    CAS  PubMed  Google Scholar 

  93. Shemesh, J., Apter, S., Stolero, D., Itzchak, Y. & Motro, M. Annual progression of coronary artery calcium by spiral computed tomography in hypertensive patients without myocardial ischemia but with prominent atherosclerotic risk factors, in patients with previous angina pectoris or healed acute myocardial infarction, and in patients with coronary events during follow-up. Am. J. Cardiol. 87, 1395–1397 (2001).

    CAS  PubMed  Google Scholar 

  94. Sutton-Tyrrell, K. et al. Usefulness of electron beam tomography to detect progression of coronary and aortic calcium in middle-aged women. Am. J. Cardiol. 87, 560–564 (2001).

    CAS  PubMed  Google Scholar 

  95. Yoon, H. C., Emerick, A. M., Hill, J. A., Gjertson, D. W. & Goldin, J. G. Calcium begets calcium: progression of coronary artery calcification in asymptomatic subjects. Radiology 224, 236–241 (2002).

    PubMed  Google Scholar 

  96. Cassidy, A. E. et al. Progression of subclinical coronary atherosclerosis: does obesity make a difference? Circulation 111, 1877–1882 (2005).

    PubMed  Google Scholar 

  97. Kronmal, R. A. et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 115, 2722–2730 (2007).

    PubMed  Google Scholar 

  98. Raggi, P., Cooil, B., Ratti, C., Callister, T. Q. & Budoff, M. Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension 46, 238–243 (2005).

    CAS  PubMed  Google Scholar 

  99. Raggi, P., Callister, T. Q. & Shaw, L. J. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler. Thromb. Vasc. Biol. 24, 1272–1277 (2004).

    CAS  PubMed  Google Scholar 

  100. Budoff, M. J. et al. Rates of progression of coronary calcium by electron beam tomography. Am. J. Cardiol. 86, 8–11 (2000).

    CAS  PubMed  Google Scholar 

  101. Budoff, M. J. et al. Diabetes and progression of coronary calcium under the influence of statin therapy. Am. Heart J. 149, 695–700 (2005).

    CAS  PubMed  Google Scholar 

  102. Callister, T. Q., Raggi, P., Cooil, B., Lippolis, N. J. & Russo, D. J. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N. Engl. J. Med. 339, 1972–1978 (1998).

    CAS  PubMed  Google Scholar 

  103. Raggi, P. et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic postmenopausal women: Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES). Circulation 112, 563–571 (2005).

    CAS  PubMed  Google Scholar 

  104. Schmermund, A. et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation 113, 427–437 (2006).

    CAS  PubMed  Google Scholar 

  105. Groen, J. M. et al. The influence of heart rate, slice thickness, and calcification density on calcium scores using 64-slice multidetector computed tomography: a systematic phantom study. Invest. Radiol. 42, 848–855 (2007).

    PubMed  Google Scholar 

  106. Horiguchi, J. et al. Variability of repeated coronary artery calcium measurements by 1.25-mm- and 2.5-mm-thickness images on prospective electrocardiograph-triggered 64-slice CT. Eur. Radiol. 18, 209–216 (2008).

    PubMed  Google Scholar 

  107. Kim, K. P., Einsteinm, A. J. & Berrington de González, A. Coronary artery calcification screening: estimated radiation dose and cancer risk. Arch. Intern. Med. 169, 1188–1194 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. N. Alexopoulos was supported by a scholarship from the Hellenic Cardiological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Raggi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexopoulos, N., Raggi, P. Calcification in atherosclerosis. Nat Rev Cardiol 6, 681–688 (2009). https://doi.org/10.1038/nrcardio.2009.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing