Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular dysfunction in idiopathic dilated cardiomyopathy

Abstract

Idiopathic dilated cardiomyopathy (IDCM) is defined as myocardial dilatation and dysfunction in the absence of overt coronary heart disease. Myocardial injury and genetic or environmental factors can lead to the development of IDCM, which was historically characterized by marked abnormalities in the function and integrity of cardiomyocytes. However, cardiac endothelial dysfunction has also been shown to be associated with progression and poor prognosis of IDCM. Moreover, marked vascular derangements and impaired vasculogenic and angiogenic responses have been reported in patients with IDCM. On the basis of these data we re-examine IDCM pathophysiology as a downstream complication of vascular derangements that contribute to myocyte damage. Animal models closely resembling the marked vascular alterations found in patients with IDCM will be of paramount importance for further enhancing our comprehension of disease progression and for testing new drugs and stem-cell or gene-based therapies.

Key Points

  • Analysis of the cardiac vasculature using multislice CT reveals marked side-branch paucity and short, thin epicardial arteries in hearts from patients with idiopathic dilated cardiomyopathy (IDCM)

  • De novo vascular organization of mobilized endothelial progenitors (vasculogenesis) and new blood vessel formation by pre-existing mature endothelial cells (angiogenesis) are altered in patients with IDCM

  • Whether vascular dysfunction contributes to or is a marker of the progression of left ventricular dysfunction in patients with IDCM remains to be established

  • Appropriate in vivo animal models closely resembling the marked vascular alterations will be essential for further enhancing our comprehension of disease progression and for testing new therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathological alterations in IDCM.
Figure 2: Defective vascularization in IDCM.
Figure 3: Increased mobilization of endothelial progenitor cells in IDCM.
Figure 4: Impaired vasculogenesis and angiogenesis in IDCM.
Figure 5: Mechanisms for vascular dysfunction in IDCM.
Figure 6: Proposed mechanism of IDCM pathophysiology.

Similar content being viewed by others

References

  1. Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93, 841–842 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  3. Michels, V. V. et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med. 326, 77–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y-S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda, Y. & Ross, J. Models of dilated cardiomyopathy in the mouse and the hamster. Curr. Opin. Cardiol. 15, 197–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Recchia, F. A. & Lionetti, V. Animal models of dilated cardiomyopathy for translational research. Vet. Res. Commun. 31, 35–41 (2007).

    Article  PubMed  Google Scholar 

  7. Towbin, J. A. et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296, 1867–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Towbin, J. A. & Bowles, N. E. The failing heart. Nature 415, 227–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ai, X. & Pogwizd, S. M. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ. Res. 1, 54–63 (2005).

    Article  CAS  Google Scholar 

  10. Seidman, J. G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Osterziel, K. J. & Perrot, A. Dilated cardiomyopathy: more genes means more phenotypes. Eur. Heart J. 26, 751–754 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Perrot, A., Dietz, R. & Osterziel, K. J. Is there a common genetic basis for all familial cardiomyopathies? Eur. J. Heart Fail. 9, 4–6 (2007).

    Article  PubMed  Google Scholar 

  13. Parks, S. B. et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 156, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor, M. R. et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 41, 771–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Li, D. et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Knöll, R. et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116, 515–525 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Baboonian, C., Davies, M. J., Booth, J. C. & McKenna, W. J. Coxsackie B viruses and human heart disease. Curr. Top. Microbiol. Immunol. 223, 31–52 (1997).

    CAS  PubMed  Google Scholar 

  18. Wessely, R. et al. Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J. Clin. Invest. 102, 1444–1453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spotnitz, M. D. & Lesch, M. Idiopathic dilated cardiomyopathy as a late complication of healed viral (Coxsackie B virus) myocarditis: historical analysis, review of the literature, and a postulated unifying hypothesis. Prog. Cardiovasc. Dis. 49, 42–57 (2006).

    Article  PubMed  Google Scholar 

  20. Lappé, J. M., Pelfrey, C. M. & Tang, W. H. Recent insights into the role of autoimmunity in idiopathic dilated cardiomyopathy. J. Card. Fail. 14, 521–530 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jahns, R., Boivin, V., Schwarzbach, V., Ertl, G. & Lohse, M. J. Pathological autoantibodies in cardiomyopathy. Autoimmunity 41, 454–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Brutsaert, D. L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83, 59–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, P. P., Mak, S. & Stewart, J. D. Potential role of the microvasculature in progression of heart failure. Am. J. Cardiol. 84, 23L–26L (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Brutsaert, D. L., Meulemans, A. L., Sipido, K. R. & Sys, S. U. Effects of damaging the endocardial surface on the mechanical performance of isolated cardiac muscle. Circ. Res. 62, 358–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Ungureanu-Longrois, D. et al. Contractile responsiveness of ventricular myocytes to isoproterenol is regulated by induction of nitric oxide synthase activity in cardiac microvascular endothelial cells in heterotypic primary culture. Circ. Res. 77, 486–493 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Qi, X. L., Nguyen, T. L., Andries, L., Sys, S. U. & Rouleau, J. L. Vascular endothelial dysfunction contributes to myocardial depression in ischemia-reperfusion in the rat. Can. J. Physiol. Pharmacol. 78, 35–45 (1998).

    Article  Google Scholar 

  27. Bell, J. P., Mosfer, S. I., Lang, D., Donaldson, F. & Lewis, M. J. Vitamin C and quinapril abrogate LVH and endothelial dysfunction in aortic-banded guinea pigs. Am. J. Physiol. Heart Circ. Physiol. 281, H1704–H1710 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, X. L. et al. Improvement of endocardial and vascular endothelial function on myocardial performance by captopril treatment in postinfarct rat hearts. Circulation 100, 1338–1345 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Weiss, M. B. et al. Myocardial blood flow in congestive and hypertrophic cardiomyopathy: relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation 54, 484–494 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Parodi, O. et al. Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation 88, 509–522 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Neglia, D. et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105, 186–193 (2002).

    Article  PubMed  Google Scholar 

  32. Stolen, K. Q. et al. Myocardial perfusion reserve and peripheral endothelial function in patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 93, 64–68 (2004).

    Article  PubMed  Google Scholar 

  33. Harrison, C. V. & Wood, P. Hypertensive and ischemic heart disease; a comparative clinical and pathological study. Br. Heart J. 11, 205–229 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mela, T. et al. Coronary arterial dimension-to-left ventricular mass ratio in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 83, 1277–1280 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Mosseri, M. et al. The diameter of the epicardial coronary arteries in patients with dilated cardiomyopathy. Int. J. Cardiol. 62, 133–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Dodge, J. T., Brown, B. G., Bolson, E. L. & Dodge, H. T. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86, 232–246 (1992).

    Article  PubMed  Google Scholar 

  37. MacAlpin, R. N., Abbasi, A. S., Grollman, J. H. & Eber, L. Human coronary artery size during life: a cinearterioographic study. Radiology 108, 567–576 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. Roura, S. et al. Idiopathic dilated cardiomyopathy exhibits defective vascularization and vessel formation. Eur. J. Heart Fail. 10, 995–1002 (2007).

    Article  Google Scholar 

  39. Abraham, D. et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ. Res. 87, 644–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Schafer, R. et al. Impaired VE-cadherin/beta-catenin expression mediates endothelial cell degeneration in dilated cardiomyopathy. Circulation 108, 1585–1591 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Tham, E., Wang, J., Piehl, F. & Weber, G. Upregulation of VEGF-A without angiogenesis in a mouse model of dilated cardiomyopathy caused by motochondrial dysfunction. Histochem. Cytochem. 50, 935–944 (2002).

    Article  CAS  Google Scholar 

  42. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Gehling, U. M. et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95, 3106–3112 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Urbich, C. & Dimmeler, S. Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med. 14, 318–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Crosby, J. R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 87, 728–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Murohara, T. et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest. 105, 1527–1536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shintani, S. et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103, 2776–2779 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Lev, E. I. et al. Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. J. Vasc. Res. 42, 408–414 (2005).

    Article  PubMed  Google Scholar 

  52. Hill, J. M. et al. Circulating EPCs, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  PubMed  Google Scholar 

  53. Schmidt-Lucke, C. et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111, 2981–2987 (2005).

    Article  PubMed  Google Scholar 

  54. Urbich, C. & Dimmeler, S. Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney Int. 67, 1672–1676 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Quyyumi, A. A. & Hill, J. M. Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk. Can. J. Cardiol. 20, 44B–48B (2004).

    PubMed  Google Scholar 

  56. Theiss, H. D. et al. Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur. Heart J. 28, 1258–1264 (2007).

    Article  PubMed  Google Scholar 

  57. Valgimigli, M. et al. CD34+ and EPCs in patients with various degrees of congestive heart failure. Circulation 110, 1209–1212 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, Y. L. et al. Decreased small arterial compliance with increased serum vascular endothelial growth factor-A and circulating endothelial progenitor cell in dilated cardiomyopathy. Chin. Med. J. 121, 316–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Masckauchán, T. N., Shawber, C. J., Funahashi, Y., Li, C. M. & Kitajewski, J. Wnt/β-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8, 43–51 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Masckauchán, T. N. et al. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol. Biol. Cell 17, 5163–5172 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wright, M., Aikawa, M., Szeto, W. & Papkoff, J. Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem. Biophys. Res. Commun. 263, 384–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Blankesteijn, W. M., van Gijn, M. E., Essers-Janssen, Y. P., Daemen, M. J. & Smits, J. F. β-Catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am. J. Pathol. 157, 877–883 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, K. I. et al. β-Catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endothelial growth factor-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler. Thromb. Vasc. Biol. 26, 91–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Hou, X. W. et al. Granulocyte colony-stimulating factor reduces cardiomyocyte apoptosis and improves cardiac function in adriamycin-induced cardiomyopathy in rats. Cardiovasc. Drugs Ther. 20, 85–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Mohamed, H. E., Asker, M. E., Ali, S. I. & el-Fattah, T. M. Protection against doxorubicin cardiomyopathy in rats: role of phosphodiesterase inhibitors type 4. J. Pharm. Pharmacol. 56, 757–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Herskowitz, A., Wolfgram, L. J., Rose, N. R. & Beisel, K. W. Coxsackievirus B3 murine myocarditis: a pathologic spectrum of myocarditis in genetically defined inbred strains. J. Am. Coll. Cardiol. 9, 1311–1319 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Matsumori, A., Kawai, C., Crumpacker, C. S. & Abelmann, W. H. Pathogenesis and preventive and therapeutic trials in an animal model of dilated cardiomyopathy induced by a virus. Jpn. Circ. J. 51, 661–664 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    CAS  PubMed  Google Scholar 

  69. Kubota, T. et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ. Res. 81, 627–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Bryant, D. et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97, 1375–1381 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Taylor, J. A. et al. A spontaneous model for autoimmune myocarditis using the human MHC molecule HLA-DQ8. J. Immunol. 172, 2651–2658 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Coral-Vazquez, R. et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, X. et al. Mouse model of desmin-related cardiomyopathy. Circulation 103, 2402–2407 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. White, D. E. et al. Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure. Genes Dev. 20, 2355–2360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bendig, G. et al. Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev. 20, 2361–2372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J. et al. Cardiomyopathy associated with microcirculation dysfunction in laminin α4 chain-deficient mice. J. Biol. Chem. 281, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sakamoto, A. et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, δ-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl Acad. Sci. USA 94, 13873–13878 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shannon, R. P. et al. Alterations in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am. J. Physiol. 260, H1903–H1911 (1991).

    CAS  PubMed  Google Scholar 

  80. Allworth, M. S. et al. Effect of enalapril in dogs with pacing-induced heart failure. Am. J. Vet. Res. 56, 85–94 (1995).

    CAS  PubMed  Google Scholar 

  81. Heinke, M. Y., Yao, M., Chang, D., Einstein, R. & dos Remedios, C. G. Apoptosis of ventricular and atrial myocytes from pacing-induced canine heart failure. Cardiovasc. Res. 49, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Nikolaidis, L. A. et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110, 955–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Nagareddy, P. R., McNeill, J. H. & MacLeod, K. M. Chronic inhibition of inducible nitric oxide synthase ameliorates cardiovascular abnormalities in streptozotocin diabetic rats. Eur. J. Pharmacol. 611, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Podlowski, S. et al. β1-Adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J. Mol. Med. 78, 87–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Gilbert, E. M. et al. Long-term β-blocker vasodilator therapy improves cardiac function in idiopathic dilated cardiomyopathy: a double-blind, randomized study of bucindolol versus placebo. Am. J. Med. 88, 223–239 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Urbich, C. & Dimmeler, S. Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney Int. 67, 1672–1676 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Assmus, B. et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res. 92, 1049–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Walter, D. H. et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105, 3017–3024 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Llevadot, J. et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest. 108, 399–405 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dimmeler, S. et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Node, K., Fujita, M., Kitakaze, M., Hori, M. & Liao, J. K, Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108, 839–843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van der Harst, P., Voors, A. A. & van Veldhuisen, D. J. Short-term statin therapy and cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 109, e34 (2004).

    Article  PubMed  Google Scholar 

  93. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. De Falco, E. et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104, 3472–3482 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Iwaguro, H. et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105, 732–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Yi, C. et al. Transplantation of endothelial progenitor cells transferred by vascular endothelial growth factor gene for vascular regeneration of ischemic flaps. J. Surg. Res. 135, 100–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Cho, H. J. et al. Regulation of endothelial cell and endothelial progenitor cell survival and vasculogenesis by integrin-linked kinase. Arterioscler. Thromb. Vasc. Biol. 25, 1154–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Pittenger, M. F. & Martin, B. J. Mesenchymal stem cells and their potential as cardiac therapeutics Circ. Res. 95, 9–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Nagaya, N. et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112, 1128–1135 (2005).

    Article  PubMed  Google Scholar 

  100. Ichim, T. E. et al. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod. Biomed. Online 16, 898–905 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors specially thank C. Prat-Vidal, C. Gálvez Montón and A. Echenique for obtaining, and immunohistochemical processing of, myocardial specimens from the hearts of patients with idiopathic dilated cardiomyopathy, and R. Leta for selection of multislice CT images. The work was supported by grants from the Ministerio de Educación y Ciencia (SAF2004-08,044-C03-01; SAF2008-05,144-C02-01), and Societat Catalana de Cardiologia. We also appreciate support from Fundació Privada Daniel Bravo Andreu. The authors thank the reviewers and editors for invaluable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Bayes-Genis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roura, S., Bayes-Genis, A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol 6, 590–598 (2009). https://doi.org/10.1038/nrcardio.2009.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing