Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Identification of tumour-associated t-cell epitopes for vaccine development

Key Points

  • T-cell epitopes from tumour antigens have been included in many vaccination studies, and their potential to induce antitumour immune responses has become manifest. Nevertheless, the clinical outcome of such studies has to be improved.

  • The number of known epitopes is still limited; therefore, some tumours cannot be treated by immunotherapeutic approaches. For others, the efficacy is not yet optimal.

  • T-cell epitopes from tumour antigens can be defined by two principal strategies: one starts from an existing T-cell response and identifies the target of the response, whereas the other uses the sequence of a tumour antigen and employs epitope prediction to identify the relevant epitopes.

  • New tumour antigens can be discovered by analysing the specificity of existing T-cell responses, or by screening strategies such as the SEREX programme, comparative proteome analysis or gene-expression profiling.

  • To improve the clinical outcome of antitumour vaccinations, tumour-escape mechanisms have to be avoided by the use of efficient, multitarget vaccines.

  • With the growing number of T-cell epitopes, it will become feasible to design patient-specific, individual vaccines that address several different antigens from one tumour and several HLA specificities, including class-II-restricted epitopes.

Abstract

Ten years ago, the first melanoma patient was successfully treated by vaccination with a short peptide, which was, in fact, the first tumour-specific T-cell epitope ever defined — MAGE. Since then, a number of clinical vaccination studies have underlined the potential of tumour-specific T-cell epitopes. But, how can we identify more epitopes to improve their efficacy as an anticancer treatment?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for the characterization of T-cell epitopes.
Figure 2: Complementary information leads to the identification of useful tumour epitopes.

Similar content being viewed by others

References

  1. Renkvist, N., Castelli, C., Robbins, P. F. & Parmiani, G. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 50, 3–15 (2001).

    Article  CAS  Google Scholar 

  2. Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998).

    Article  CAS  Google Scholar 

  3. Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 (1998).

    Article  CAS  Google Scholar 

  4. Lee, K. H. et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. 163, 6292–6300 (1999).

    CAS  PubMed  Google Scholar 

  5. Panelli, M. C. et al. Phase I study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART1 and GP100. J. Immunother. 23, 487–498 (2000).

    Article  CAS  Google Scholar 

  6. Bodey, B., Bodey, B. Jr, Siegel, S. E. & Kaiser, H. E. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res. 20, 2665–2676 (2000).

    CAS  PubMed  Google Scholar 

  7. Ohnmacht, G. A. et al. Short-term kinetics of tumor antigen expression in response to vaccination. J. Immunol. 167, 1809–1820 (2001).

    Article  CAS  Google Scholar 

  8. Tait, B. D. HLA class I expression on human cancer cells. Implications for effective immunotherapy. Hum. Immunol. 61, 158–165 (2000).

    Article  CAS  Google Scholar 

  9. Seliger, B. et al. Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res. 61, 8647–8650 (2001).

    CAS  PubMed  Google Scholar 

  10. Rammensee, H.-G., Bachmann, J., Emmerich, N., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  Google Scholar 

  11. Vonderheide, R. H. et al. Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin. Cancer Res. 7, 3343–3348 (2001).An actual example of reverse immunology, using a ubiquitous tumour antigen, telomerase. Epitope identification was achieved after induction of peptide-specific T cells.

    CAS  PubMed  Google Scholar 

  12. Schmitz, M. et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 60, 4845–4849 (2000).

    CAS  PubMed  Google Scholar 

  13. Mashino, K. et al. Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br. J. Cancer 85, 713–720 (2001).

    Article  CAS  Google Scholar 

  14. Gillespie, A. M. et al. MAGE, BAGE and GAGE: tumour antigen expression in benign and malignant ovarian tissue. Br. J. Cancer 78, 816–821 (1998).

    Article  CAS  Google Scholar 

  15. Russo, V. et al. Expression of the MAGE gene family in primary and metastatic human breast cancer: implications for tumor antigen-specific immunotherapy. Int. J. Cancer 64, 216–221 (1995).

    Article  CAS  Google Scholar 

  16. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  Google Scholar 

  17. Traversari, C. et al. A nonapeptide encoded by human gene MAGE1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176, 1453–1457 (1992).

    Article  CAS  Google Scholar 

  18. Smith, E. S. et al. Lethality-based selection of recombinant genes in mammalian cells: application to identifying tumor antigens. Nature Med. 7, 967–972 (2001).A new generation of expression libraries that comprises enrichment steps.

    Article  CAS  Google Scholar 

  19. Cox, A. L. et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264, 716–719 (1994).

    Article  CAS  Google Scholar 

  20. Falk, K., Rötzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  Google Scholar 

  21. Rötzschke, O. et al. Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21, 2891–2894 (1991).

    Article  Google Scholar 

  22. Stevanovic, S. & Rammensee, H.-G. Identification of T-cell epitopes using allele-specific ligand motifs. Behring. Inst. Mitt. 95, 7–13 (1994).

    Google Scholar 

  23. Celis, E. et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc. Natl Acad. Sci. USA 91, 2105–2109 (1994).

    Article  CAS  Google Scholar 

  24. Parker, K. C., Bednarek, M. A. & Coligan, J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994).

    CAS  PubMed  Google Scholar 

  25. Nussbaum, A. K. et al. PapRoC: a predicition algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53, 87–94 (2001).

    Article  CAS  Google Scholar 

  26. Kesmir, C. et al. 〈http://www.cbs.dtu.dk/services/NetChop/〉.

  27. Schirle, M., Weinschenk, T. & Stevanovic, S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J. Immunol. Methods 257, 1–16 (2001).

    Article  CAS  Google Scholar 

  28. Kessler, J. H. et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med. 193, 73–88 (2001).Use of proteasomal digestion for the definition of HLA-presented peptides from tumour antigens.

    Article  CAS  Google Scholar 

  29. Pascolo, S. et al. A MAGE-A1 HLA-A*0201 epitope identified by mass spectrometry. Cancer Res. 61, 4072–4077 (2001).Identification of a tumour-specific class I epitope by mass spectrometry without the use of pre-existing T cells.

    CAS  PubMed  Google Scholar 

  30. Brossart, P. et al. Identification of HLA-A2 restricted T cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93, 4309–4317 (1999).

    CAS  PubMed  Google Scholar 

  31. Schirle, M. et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur. J. Immunol. 30, 2216–2225 (2000).

    Article  CAS  Google Scholar 

  32. Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA 92, 11810–11813 (1995).

    Article  CAS  Google Scholar 

  33. Czerwenka, K. F. et al. Comparative analysis of two-dimensional protein patterns in malignant and normal human breast tissue. Cancer Detect. Prev. 25, 268–279 (2001).

    CAS  PubMed  Google Scholar 

  34. Meehan, K. L., Holland, J. W. & Dawkins, H. J. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate 50, 54–63 (2002).

    Article  CAS  Google Scholar 

  35. Emmert-Buck, M. R. et al. An approach to proteomic analysis of human tumors. Mol. Carcinog. 27, 158–165 (2000).

    Article  CAS  Google Scholar 

  36. Mathiassen, S., Lauemöller, S. L., Ruhwald, M., Claesson, M. H. & Buus, S. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity. Eur. J. Immunol. 31, 1239–1246 (2001).Candidate antigens from gene-expression profiling were used for epitope prediction, leading to protective T-cell epitopes in a mouse model.

    Article  CAS  Google Scholar 

  37. Boer, J. M. et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 11, 1861–1870 (2001).

    Article  CAS  Google Scholar 

  38. Klade C. S. et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 1, 890–898 (2001).

    Article  CAS  Google Scholar 

  39. van Driel, W. J. et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a Phase I–II trial. Eur. J. Cancer 35, 946–952 (1999).

    Article  CAS  Google Scholar 

  40. Slingluff, C. L. Jr et al. Phase I trial of a melanoma vaccine with GP100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin. Cancer Res. 7, 3012–3024 (2001).

    CAS  PubMed  Google Scholar 

  41. Brossart, P. et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96, 3102–3108 (2000).

    CAS  PubMed  Google Scholar 

  42. Kobayashi, H., Song, Y., Hoon, D. S., Appella, E. & Celis, E. Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-A3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res. 61, 4773–4778 (2001).A recent example of how to identify tumour-specific HLA class-II-presented epitopes.

    CAS  PubMed  Google Scholar 

  43. Schultz, E. S. et al. A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res. 60, 6272–6275 (2000).

    CAS  PubMed  Google Scholar 

  44. Kobayashi, H., Lu, J. & Celis, E. Identification of helper T-cell epitopes that encompass or lie proximal to cytotoxic T-cell epitopes in the GP100 melanoma tumor antigen. Cancer Res. 61, 7577–7584 (2001).

    CAS  PubMed  Google Scholar 

  45. Chaux, P. et al. MAGE1 peptide recognized on HLA-DR15 by CD4+ T cells. Eur. J. Immunol. 31, 1910–1916 (2001).

    Article  CAS  Google Scholar 

  46. Casares, N. et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated TH1 helper peptide elicits protective CTL immunity. Eur. J. Immunol. 31, 1780–1789 (2001).

    Article  CAS  Google Scholar 

  47. Marks, M. S. et al. A lysosomal targeting signal in the cytoplasmic tail of the β-chain directs HLA-DM to MHC class II compartments. J. Cell Biol. 131, 351–369 (1995).

    Article  CAS  Google Scholar 

  48. Sanderson, S., Frauwirth, K. & Shastri, N. Expression of endogenous peptide–major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins. Proc. Natl Acad. Sci. USA 92, 7217–7221 (1995).

    Article  CAS  Google Scholar 

  49. Malcherek, G. et al. MHC class II-associated invariant chain peptide replacement by T cell epitopes: engineered invariant chain as a vehicle for directed and enhanced MHC class II antigen processing and presentation. Eur. J. Immunol. 28, 1524–1533 (1998).

    Article  CAS  Google Scholar 

  50. Rodriguez, F., Harkins, S., Redwine, J. M., de Pereda, J. M. & Whitton, J. L. CD4+ T cells induced by a DNA vaccine: immunological consequences of epitope-specific lysosomal targeting. J. Virol. 75, 10421–10430 (2001).

    Article  CAS  Google Scholar 

  51. van der Bruggen, P. et al. A peptide encoded by human gene MAGE3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Eur. J. Immunol. 24, 3038–3043 (1994).

    Article  CAS  Google Scholar 

  52. Jäger, E. et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med. 187, 265–270 (1998).

    Article  Google Scholar 

  53. Wölfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  Google Scholar 

  54. Robbins, P. F. et al. A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183, 1185–1192 (1996).

    Article  CAS  Google Scholar 

  55. Mandruzzato, S., Stroobant, V., Demotte, N. & van der Bruggen, P. A human CTL recognizes a caspase-8-derived peptide on autologous HLA-B*3503 molecules and two unrelated peptides on allogeneic HLA-B*3501 molecules. J. Immunol. 164, 4130–4134 (2000).

    Article  CAS  Google Scholar 

  56. Ressing, M. E. et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J. Immunol. 154, 5934–5943 (1995).

    CAS  Google Scholar 

  57. Brichard, V. G. et al. A tyrosinase nonapeptide presented by HLA-B44 is recognized on a human melanoma by autologous cytolytic T lymphocytes. Eur. J. Immunol. 26, 224–230 (1996).

    Article  CAS  Google Scholar 

  58. Skipper, J. C. et al. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from PMEL17/GP100. J. Immunol. 157, 5027–5033 (1996).

    CAS  PubMed  Google Scholar 

  59. Salgaller, M. L. et al. Dendritic cell-based immunotherapy of prostate cancer. Crit. Rev. Immunol. 18, 109–119 (1998).

    Article  CAS  Google Scholar 

  60. Fisk, B., Blevins, T. L., Wharton, J. T. & Ioannides, C. G. Identification of an immunodominant peptide of HER2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J. Exp. Med. 181, 2109–2117 (1995).

    Article  CAS  Google Scholar 

  61. Kawashima, I. et al. Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res. 59, 431–435 (1999).

    CAS  PubMed  Google Scholar 

  62. Scheibenbogen, C. et al. Phase 2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother. 23, 275–281 (2000).

    Article  CAS  Google Scholar 

  63. Hunger, R. E. et al. Successful induction of immune responses against mutant RAS in melanoma patients using intradermal injection of peptides and GM–CSF as adjuvant. Exp. Dermatol. 10, 161–167 (2001).

    Article  CAS  Google Scholar 

  64. Mackensen, A. et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int. J. Cancer 86, 385–392 (2000).

    Article  CAS  Google Scholar 

  65. Yu, J. S. et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61, 842–847 (2001).

    CAS  PubMed  Google Scholar 

  66. Gjertsen, M. K. et al. Intradermal RAS peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int. J. Cancer 92, 441–450 (2001).

    Article  CAS  Google Scholar 

  67. Gajewski, T. F., Fallarino, F., Ashikari, A. & Sherman, M. Immunization of HLA-A2+ melanoma patients with MAGE3 or MelanA peptide-pulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin 12. Clin. Cancer Res. 7, 895s–901s (2001).

    CAS  PubMed  Google Scholar 

  68. Schott, M. et al. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J. Clin. Endocrinol. Metab. 86, 4965–4969 (2001).

    Article  CAS  Google Scholar 

  69. Jäger, E. et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA 97, 12198–12203 (2000).

    Article  Google Scholar 

  70. Rosenberg, S. A. et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J. Immunol. 163, 1690–1695 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Murphy, G. P. et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38, 73–78 (1999).

    Article  CAS  Google Scholar 

  72. Sadanaga, N. et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin. Cancer Res. 7, 2277–2284 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

breast cancer

cervical cancer

gastrointestinal cancer

Kaposi's sarcoma

kidney cancer

lung cancer

melanoma

non-Hodgkin's lymphoma

ovarian cancer

pancreatic cancer

prostate cancer

thyroid cancer

LocusLink

CD4

CD8

ERBB2

MAGE1

p53

RAS

survivin

telomerase

Medscape DrugInfo

Herceptin

FURTHER INFORMATION

Cancer trials

MHC binding prediction BIMAS

Proteasomal cleavage prediction NetChop

Proteasomal cleavage prediction PAPROC

SEREX database

SYFPEITHI database

Glossary

HLAs

Human leukocyte antigens, which are molecules of the human major histocompatibility complex.

CD8

A surface molecule that is expressed exclusively by cytotoxic T cells.

CD4

A surface molecule that is expressed exclusively by T-helper cells.

MHC CLASS II MOLECULES

Peptide receptors, similar to class I molecules in structure and function, but exclusively expressed by a small set of immune cells. They mainly present peptides from extracellular proteins to T-helper cells.

CYTOTOXIC T LYMPHOCYTES

(CTLs: killer cells, cytotoxic T cells). These control all major histocompatibility complex class-I-expressing body cells for the presence of abnormal (viral, tumour-associated) peptides.

MHC CLASS I MOLECULES

Highly polymorphic glycoproteins that are expressed by every nucleated body cell of vertebrates, and that are encoded by the gene cluster 'major histocompatibility complex' (MHC). The human MHC molecules are termed HLA (human leukocyte antigen) molecules. MHC class I molecules mainly present peptides from intracellular proteins to cytotoxic T cells.

DENDRITIC CELLS

(DCs). These present T-cell epitopes very efficiently and are able to activate cytotoxic T lymphocytes.

MELANOMA

Skin cancer, originating from transformed melanocytes.

MAGE

Melanoma antigen; a family of proteins that are expressed only in testis or tumour cells.

PROTEOMICS

Analysis of the entirety of proteins from a tissue sample, separated by two-dimensional gel electrophoresis. Each individual protein spot can be identified after tryptic digestion and mass spectrometrical analysis of the resulting peptides.

MICROARRAY ANALYSIS

'DNA chips' contain many thousands of oligonucleotides that represent fragments of genes, immobilized on a solid surface. They are probed with cDNA that is prepared from mRNA of tissue samples and so give quantitative information about gene expression.

MELANOSOMES

Subcellular organelles in melanocytes, which contain the skin's pigments.

PERIPHERAL-BLOOD MONONUCLEAR CELLS

(PBMCs). Includes B cells, T cells and monocytes. These can be obtained from whole blood after ficoll density-gradient centrifugation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanovic, S. Identification of tumour-associated t-cell epitopes for vaccine development. Nat Rev Cancer 2, 514 (2002). https://doi.org/10.1038/nrc841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc841

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing