Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding and unlocking the BCL-2 dependency of cancer cells

Key Points

  • The balance between pro- and anti-apoptotic activities of BCL-2 family members is tipped towards survival in many cancer cells, thus allowing them to survive various stressful environments, tumour stress phenotypes and/or oncogene-induced death signals.

  • As death signals may persist during tumour progression, cancer cells may be addicted to these survival mechanisms and be in a state of dependence on 'BCL-2-like' (BCL-2L) anti-apoptotic proteins.

  • Survival of 'BCL-2L-dependent' cancer cells relies on the maintenance of protein–protein complexes in which the BH3 domain of some pro-apoptotic BCL-2 family members engages a hydrophobic groove at the surface of anti-apoptotic BCL-2L proteins.

  • Structural characterization of the BH3-binding interface of anti-apoptotic BCL-2L proteins has led to the identification of small-molecule BH3 mimetics that disrupt key interactions and promote cancer cell apoptosis by on-target effects.

  • A dual BCL-2 and BCL-XL inhibitor and a specific BCL-2 inhibitor have shown clinical activity in haematological malignancies. The dual inhibitor induces dose-limiting thrombocytopenia owing to BCL-XL inhibition.

  • Finely-tuned inhibition of BCL-XL and of MCL1 in cancer cells by new and selective drugs remains a challenge and a necessity.

  • Understanding the exact effects of inhibitors on endogenous (membrane-localized) complexes, identifying predictive biomarkers for drug efficacy and circumscribing the global biological effects of these compounds is also required.

Abstract

Cancer cells are subject to many apoptotic stimuli that would kill them were it not for compensatory prosurvival alterations. BCL-2-like (BCL-2L) proteins contribute to such aberrant behaviour by engaging a network of interactions that is potent at promoting survival but that is also fragile: inhibition of a restricted number of interactions may suffice to trigger cancer cell death. Currently available and novel compounds that inhibit these interactions could be efficient therapeutic agents if this phenotype of BCL-2L dependence was better understood at a molecular, cellular and systems level and if it could be diagnosed by relevant biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of mitochondrial outer membrane permeabilization and cell survival by interacting BCL-2 family members.
Figure 2: Regulation of BCL-2L proteins by oncogenic signalling.
Figure 3: BCL-2L protein dependence as an output of complex, interconnected oncogenic signalling networks.
Figure 4: Transcriptional, post-transcriptional and post-translational regulation of MCL1 in cancer cells.

Similar content being viewed by others

References

  1. Degterev, A., Boyce, M. & Yuan, J. A decade of caspases. Oncogene 22, 8543–8567 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Westphal, D., Dewson, G., Czabotar, P. E. & Kluck, R. M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Lalier, L. et al. Prostaglandins antagonistically control Bax activation during apoptosis. Cell Death Differ. 18, 528–537 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chipuk, J. E. et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148, 988–1000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cartron, P. F. et al. The first α helix of bax plays a necessary role in its ligand-induced activation by the BH3-only proteins bid and PUMA. Mol. Cell 16, 807–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mérino, D. et al. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J. Cell Biol. 186, 355–362 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Aqeilan, R. I., Calin, G. A. & Croce, C. M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Garzon, R. et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 114, 5331–5341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002). Using an elegant transgenic model, this paper shows that the activation of MYC triggers mitochondrial apoptosis in vivo.

    Article  CAS  PubMed  Google Scholar 

  12. Allen, T. D., Rodriguez, E. M., Jones, K. D. & Bishop, J. M. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 71, 6010–6018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strasser, A., Cory, S. & Adams, J. M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 30, 3667–3683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glaser, S. P. et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 26, 120–125 (2012). This paper defines MCL1 as a therapeutic target that is crucial for the development and survival of AML cells, using genetically engineered mice and human samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly, P. N., Grabow, S., Delbridge, A. R. D., Strasser, A. & Adams, J. M. Endogenous Bcl-xL is essential for Myc-driven lymphomagenesis in mice. Blood 118, 6380–6386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011). This paper shows that in diverse cancers the sensitivity of tumour cell mitochondria to a range of BH3 peptides is indicative of a clinical response to chemotherapy. It defines BH3 profiling as a potential biomarker of treatment response.

    Article  PubMed  CAS  Google Scholar 

  17. Campone, M. et al. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1. Mol. Cancer 10, 110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barbone, D. et al. The Bcl-2 repertoire of mesothelioma spheroids underlies acquired apoptotic multicellular resistance. Cell Death Dis. 2, e174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gallenne, T. et al. Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members. J. Cell Biol. 185, 279–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zha, H. et al. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16, 6494–6508 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997). This paper reports the first structural characterization of an anti-apoptotic protein in complex with a BH3 domain.

    Article  CAS  PubMed  Google Scholar 

  25. Petros, A. M. et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 9, 2528–2534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, X., Dai, S., Zhu, Y., Marrack, P. & Kappler, J. W. The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19, 341–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hinds, M. G. & Day, C. L. Regulation of apoptosis: uncovering the binding determinants. Curr. Opin. Struct. Biol. 15, 690–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Petros, A. M., Olejniczak, E. T. & Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Smits, C., Czabotar, P. E., Hinds, M. G. & Day, C. L. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 16, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Czabotar, P. E. et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl Acad. Sci. USA 104, 6217–6222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lessene, G., Czabotar, P. E. & Colman, P. M. BCL-2 family antagonists for cancer therapy. Nature Rev. Drug Discov. 7, 989–1000 (2008). This paper reviews the structural aspects of BCL-2 family members.

    Article  CAS  Google Scholar 

  32. Follis, A. V. et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nature Chem. Biol. 9, 163–168 (2013).

    Article  CAS  Google Scholar 

  33. Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008). References 33 and 34 provide structural insights into BAX activation by BH3 domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gavathiotis, E., Reyna, D. E., Davis, M. L., Bird, G. H. & Walensky, L. D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gavathiotis, E., Reyna, D. E., Bellairs, J. A., Leshchiner, E. S. & Walensky, L. D. Direct and selective small-molecule activation of proapoptotic BAX. Nature Chem. Biol. 8, 639–645 (2012).

    Article  CAS  Google Scholar 

  37. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). This paper, which describes the characterization of ABT-737, showed that inhibition of BCL-2 homologues by small molecules is achievable, and that these small molecules can trigger cancer cell death.

    Article  CAS  PubMed  Google Scholar 

  38. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14, 1711–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, S., Dai, Y., Pei, X.-Y. & Grant, S. Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol. Cell. Biol. 29, 6149–6169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, J. & Zhang, L. PUMA, a potent killer with or without p53. Oncogene 27, S71–S83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barillé-Nion, S., Bah, N., Véquaud, E. & Juin, P. Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy. Anticancer Res. 32, 4225–4233 (2012).

    PubMed  Google Scholar 

  43. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah, O. J. et al. Bcl-XL represents a druggable molecular vulnerability during aurora B inhibitor-mediated polyploidization. Proc. Natl Acad. Sci. USA 107, 12634–12639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braun, F., Bertin-Ciftci, J., Gallouet, A.-S., Millour, J. & Juin, P. Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-xL inhibition. PLoS ONE 6, e23577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harrison, L. R. E. et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J. Clin. Invest. 121, 1075–1087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryder, C., McColl, K., Zhong, F. & Distelhorst, C. W. Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J. Biol. Chem. 287, 27863–27875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. T., Innes, D. J. & Williams, M. E. Sequential bcl-2 and c-myc oncogene rearrangements associated with the clinical transformation of non-Hodgkin's lymphoma. J. Clin. Invest. 84, 1454–1459 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh, A. et al. A gene expression signature associated with 'K-Ras addiction' reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Carné Trécesson, S. et al. Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins. J. Biol. Chem. 286, 12825–12838 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharma, S. V. & Settleman, J. Oncogenic shock: turning an activated kinase against the tumor cell. Cell Cycle 5, 2878–2880 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Kurtova, A. V. et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114, 4441–4450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vogler, M. et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113, 4403–4413 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Davids, M. S. et al. Decreased mitochondrial apoptotic priming underlies stroma-mediated treatment resistance in chronic lymphocytic leukemia. Blood 120, 3501–3509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rudin, C. M. et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res. 18, 3163–3169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hann, C. L. et al. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 68, 2321–2328 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vo, T.-T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Opferman, J. T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Nijhawan, D. et al. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1475–1486 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005). This comprehensive study establishes that anti-apoptotic proteins of the BCL-2 family promote survival by engaging distinct, complementary interactions.

    Article  CAS  PubMed  Google Scholar 

  70. Gores, G. J. & Kaufmann, S. H. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev. 26, 305–311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stewart, M. L., Fire, E., Keating, A. E. & Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nature Chem. Biol. 6, 595–601 (2010).

    Article  CAS  Google Scholar 

  73. Cohen, N. A. et al. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 19, 1175–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Opferman, J. T. et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307, 1101–1104 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Lessene, G. et al. Structure-guided design of a selective BCL-XL inhibitor. Nature Chem. Biol. 9, 390–397 (2013).

    Article  CAS  Google Scholar 

  76. Wei, G. et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell 21, 547–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mitsiades, C. S. et al. Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition. J. Clin. Endocrinol. Metab. 92, 4845–4852 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Gautier, F. et al. Bax activation by engagement with, then release from, the BH3 binding site of Bcl-xL . Mol. Cell. Biol. 31, 832–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Bertin-Ciftci, J. et al. pRb/E2F-1-mediated caspase-dependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-xL inhibitor ABT-737. Cell Death Differ. 20, 755–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yecies, D., Carlson, N. E., Deng, J. & Letai, A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115, 3304–3313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Billen, L. P., Kokoski, C. L., Lovell, J. F., Leber, B. & Andrews, D. W. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol. 6, e147 (2008). Using a minimal cell-free assay and fluorescence techniques, References 81 and 82 describe the dynamic interplay between BH3 activators, BAX and anti-apoptotic proteins in the presence of cellular membranes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kale, J., Liu, Q., Leber, B. & Andrews, D. W. Shedding light on apoptosis at subcellular membranes. Cell 151, 1179–1184 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Todt, F., Cakir, Z., Reichenbach, F., Youle, R. J. & Edlich, F. The C-terminal helix of Bcl-xL mediates Bax retrotranslocation from the mitochondria. Cell Death Differ. 20, 333–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Aranovich, A. et al. Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells. Mol. Cell 45, 754–763 (2012). Hopefully, this paper is the first of a series of novel studies that will refine our view of the interactions between BCL-2 family members. This paper examines full-length proteins interacting in intact cell membranes, enabling the function of BCL-2 family members to be considered in the context of a whole, functioning cell.

    Article  CAS  PubMed  Google Scholar 

  88. Mérino, D. et al. Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119, 5807–5816 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Cartron, P. F. et al. Nonredundant role of Bax and Bak in Bid-mediated apoptosis. Mol. Cell. Biol. 23, 4701–4712 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lindner, A. U. et al. Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res. 73, 519–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Dumitru, R. et al. Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol. Cell 46, 573–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tait, S. W. G. et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell 18, 802–813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Montessuit, S. et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142, 889–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maiuri, M. C. et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, M. W., Hirai, I. & Wang, H.-G. Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene 22, 6340–6346 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Beverly, L. J. Regulation of anti-apoptotic BCL2-proteins by non-canonical interactions: the next step forward or two steps back? J. Cell. Biochem. 113, 3–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Rong, Y.-P., Barr, P., Yee, V. C. & Distelhorst, C. W. Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. Biochim. Biophys. Acta 1793, 971–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Oakes, S. A. et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 105–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Bonneau, B., Prudent, J., Popgeorgiev, N. & Gillet, G. Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim. Biophys. Acta 1833, 1755–1765 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheng, E. H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Bellot, G. et al. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ. 14, 785–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Zaltsman, Y. et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nature Cell Biol. 12, 553–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Gardai, S. J. et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J. Biol. Chem. 279, 21085–21095 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367–1381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nikiforov, M. A. et al. Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc. Natl Acad. Sci. USA 104, 19488–19493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vaseva, A. V. & Moll, U. M. The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Xia, W. et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc. Natl Acad. Sci. USA 103, 7795–7800 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Akgul, C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell. Mol. Life Sci. 66, 1326–1336 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Warr, M. R. & Shore, G. C. Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr. Mol. Med. 8, 138–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Fritsch, R. M., Schneider, G., Saur, D., Scheibel, M. & Schmid, R. M. Translational repression of MCL-1 couples stress-induced eIF2α phosphorylation to mitochondrial apoptosis initiation. J. Biol. Chem. 282, 22551–22562 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Mills, J. R. et al. mTORC1 promotes survival through translational control of Mcl-1. Proc. Natl Acad. Sci. USA 105, 10853–10858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Quinn, B. A. et al. Targeting Mcl-1 for the therapy of cancer. Expert Opin. Investig. Drugs 20, 1397–1411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhong, Q., Gao, W., Du, F. & Wang, X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Ding, Q. et al. Degradation of Mcl-1 by β-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell. Biol. 27, 4006–4017 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Inuzuka, H. et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Schwickart, M. et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. De Biasio, A. et al. N-terminal truncation of antiapoptotic MCL1, but not G2/M-induced phosphorylation, is associated with stabilization and abundant expression in tumor cells. J. Biol. Chem. 282, 23919–23936 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E. & Green, D. R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Chu, R., Terrano, D. T. & Chambers, T. C. Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration. Biochem. Pharmacol. 83, 199–206 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for our inability to cite all the contributing primary literature owing to space constraints. We wish to thank D. Andrews, J. Hickman, D. Huang, A. Letai, J.-C. Martinou, and A. Strasser for fruitful discussion, and all members of our laboratories for their constant support and seemingly unbreakable enthusiasm. P.J. thanks his friends from Bénodet (Finistère, France) for their support and warm welcome, especially during the initial stages of writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Juin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

BCL-2 family database

PowerPoint slides

Glossary

Apoptotic threshold

The amount of stress that has to be imposed on a given cell population to trigger apoptotic death.

Caspase activation

A caspase multimerization-induced conformational change leading to auto-catalytic processing and activation of caspases, which are a family of cysteine active proteases.

BH3 mimetics

Compounds that interfere with the prosurvival function of anti-apoptotic BCL-2 family members by interacting with their BH3-binding groove and competing with (some) pro-apoptotic BCL-2 members for binding.

Stapled peptide

A peptide in which helicity is stabilized by the introduction of an intramolecular hydrocarbon linker between crucial residues. This modification protects the peptide from proteolytic degradation and enhances its ability to cross cell membranes.

Oncogene addiction

A status in which a cancer cell seems to have acquired an exquisite dependence on an activated oncogene for proliferation or survival.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juin, P., Geneste, O., Gautier, F. et al. Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer 13, 455–465 (2013). https://doi.org/10.1038/nrc3538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing