Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The evolution of the cancer niche during multistage carcinogenesis

Abstract

The concept of the tumour microenvironment recognizes that the interplay between cancer cells and stromal cells is a crucial determinant of cancer growth. In this Perspectives article, we propose the novel concept that the tumour microenvironment is built through rate-limiting steps during multistage carcinogenesis. Construction of a 'precancer niche' is a necessary and early step that is required for initiated cells to survive and evolve; subsequent niche expansion and maturation accompany tumour promotion and progression, respectively. As such, cancer niches represent an emergent property of a tumour that could be a robust target for cancer prevention and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dynamic cancer niche.
Figure 2: Schematic of niche construction, expansion and maturation.

Similar content being viewed by others

References

  1. Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the soil: the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    CAS  PubMed  Google Scholar 

  3. Barrett, J. C. Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ. Health Perspect. 100, 9–20 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  5. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    CAS  PubMed  Google Scholar 

  6. Miyoshi, H., Ajima, R., Luo, C. T., Yamaguchi, T. P. & Stappenbeck, T. S. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338, 108–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pierce, G. B., Shikes, R. & Fink, L. M. Cancer: A Problem of Developmental Biology (Prentice-Hall, 1978).

    Google Scholar 

  8. Decosse, J. J., Gossens, C. L., Kuzma, J. F. & Unsworth, D. Breast cancer: induction of differentiation by embryonic tissue. Science 181, 1057–1058 (1973).

    CAS  PubMed  Google Scholar 

  9. Fujii, H., Cunha, G. R. & Norman, J. T. The induction of adenocarinomatous differentiation in neoplastic bladder epithelium by an embryonic prostatic inducer. J. Urol. 128, 858–861 (1982).

    CAS  PubMed  Google Scholar 

  10. Morgan, J. E. et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J. Cell Biol. 157, 693–702 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bussard, K. M. & Smith, G. H. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. PLoS ONE 7, e49221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bussard, K. M., Boulanger, C. A., Booth, B. W., Bruno, R. D. & Smith, G. H. Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 70, 6336–6343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hendrix, M. J. et al. Reprogramming metastic tumour cells with embryonic microenvironments. Nature Rev. Cancer 7, 246–255 (2007).

    CAS  Google Scholar 

  14. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pylayeva-Gupta, Y., Hajdu, C., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    CAS  PubMed  Google Scholar 

  17. Okumura, T. et al. K-ras mutation targeted to gastric progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 70, 8435–8445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, X. D. et al. Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nature Med. 17, 87–95 (2011).

    CAS  PubMed  Google Scholar 

  19. Montovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Google Scholar 

  20. DeFilippis, R. A. et al. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. Cancer Discov. 2, 826–839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bemis, L. T. & Schedin, P. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res. 60, 3414–3418 (2000).

    CAS  PubMed  Google Scholar 

  22. Hattar, R. et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 11, R5 (2009).

    Google Scholar 

  23. Nguyen, D. H. et al. Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes. Clin. Cancer Res. 19, 1353–1362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, D. H. et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 19, 640–651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    CAS  PubMed  Google Scholar 

  26. Vasto, S. et al. Inflammation, ageing and cancer. Mechanisms Ageing Dev. 130, 40–45 (2009).

    CAS  Google Scholar 

  27. Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barcellos-Hoff, M. H., Derynck, R., Tsang, M. L.-S. & Weatherbee, J. A. Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93, 892–899 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Herskind, C. et al. Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy. Acta Oncol. 39, 383–388 (2000).

    CAS  PubMed  Google Scholar 

  31. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  32. Mancuso, M. et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc. Natl Acad. Sci. USA 105, 12445–12450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Coates, P. J. et al. Differential contextual responses of normal human breast epithelium to ionizing radiation in a mouse xenograft model. Cancer Res. 70, 9808–9815 (2010).

    CAS  PubMed  Google Scholar 

  34. Coates, P. J., Rundle, J. K., Lorimore, S. A. & Wright, E. G. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling. Cancer Res. 68, 450–456 (2008).

    CAS  PubMed  Google Scholar 

  35. Andarawewa, K. L. et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Res. 67, 8662–8670 (2007).

    CAS  PubMed  Google Scholar 

  36. Lorimore, S. A., Chrystal, J. A., Robinson, J. I., Coates, P. J. & Wright, E. G. Chromosomal instability in unirradiated hemaopoietic cells induced by macrophages exposed in vivo to ionizing radiation. Cancer Res. 68, 8122–8126 (2008).

    CAS  PubMed  Google Scholar 

  37. Burr, K. L. et al. Radiation-induced delayed bystander-type effects mediated by hemopoietic cells. Radiat. Res. 173, 760–768 (2010).

    CAS  PubMed  Google Scholar 

  38. Mukherjee, D., Coates, P. J., Lorimore, S. A. & Wright, E. G. The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiat. Res. 177, 18–24 (2012).

    CAS  PubMed  Google Scholar 

  39. Mishra, P. J. et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68, 4331–4339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mao, J. H. et al. Genetic variants of Tgfb1 act as context-dependent modifiers of mouse skin tumor susceptibility. Proc. Natl Acad. Sci. USA 103, 8125–8130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    CAS  PubMed  Google Scholar 

  42. Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24, 5053–5068 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA 101, 4966–4971 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moses, H. & Barcellos-Hoff, M. H. TGF-β biology in mammary development and breast cancer. Cold Spring Harb. Perspect. Biol. 3, a003277 (2010).

    Google Scholar 

  45. Lakkaraju, A. & Rodriguez-Boulan, E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18, 199–209 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van Niel, G., Porto-Carreiro, I., Simoes, S. & Raposo, G. Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21 (2006).

    CAS  PubMed  Google Scholar 

  47. Liu, Y. et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am. J. Pathol. 176, 2490–2499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiang, X. et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int. J. Cancer 124, 2621–2633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, S. et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178, 6867–6875 (2007).

    CAS  PubMed  Google Scholar 

  50. Janowska-Wieczorek, A. et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752–760 (2005).

    CAS  PubMed  Google Scholar 

  51. Janowska-Wieczorek, A. et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98, 3143–3149 (2001).

    CAS  PubMed  Google Scholar 

  52. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  53. Valenti, R. et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res. 66, 9290–9298 (2006).

    CAS  PubMed  Google Scholar 

  54. Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. & Whiteside, T. L. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T Cells (Treg). PLoS ONE 5, e11469 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Webber, J., Steadman, R., Mason, M. D., Tabi, Z. & Clayton, A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70, 9621–9630 (2010).

    CAS  PubMed  Google Scholar 

  56. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  57. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Google Scholar 

  59. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    CAS  PubMed  Google Scholar 

  60. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    CAS  Google Scholar 

  63. Stairs, D. B. et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell 19, 470–483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  65. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    CAS  Google Scholar 

  66. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006).

    CAS  Google Scholar 

  67. Bierie, B. & Moses, H. L. Under pressure: stromal fibroblasts change their ways. Cell 123, 985–987 (2005).

    CAS  PubMed  Google Scholar 

  68. Mueller, M. M. & Fusenig, N. E. Friends or foes - bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004).

    CAS  Google Scholar 

  69. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chung, L. W. K. Fibroblasts are critical determinants in prostatic cancer growth and dissemination. Cancer Metast. Rev. 10, 263–274 (1991).

    CAS  Google Scholar 

  71. Schor, S. L., Schor, A. M., Howell, A. & Haggie, J. in Breast Cancer: Scientific and Chemical Progress (eds Rich, M. A., Hager, J. C. & Lopez, D. M.) 142–157 (Kluwer Academic Publishers, 1988).

    Google Scholar 

  72. Schor, S. L., Schor, A. M. & Rushton, G. Fibroblasts from cancer patients display a mixture of both foetal and adult-like phenotypic characteristics. J. Cell Sci. 90, 401–407 (1988).

    PubMed  Google Scholar 

  73. Schor, S. L. et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Res. 63, 8827–8836 (2003).

    CAS  PubMed  Google Scholar 

  74. Schor, S. L., Schor, A. M., Durning, P. & Rushton, G. Skin fibroblasts obtained from cancer patients display foetal-like migratory behaviour on collagen gels. J. Cell Sci. 73, 235–244 (1985).

    CAS  PubMed  Google Scholar 

  75. Schor, S. & Schor, A. Phenotypic and genetic alterations in mammary stroma: implications for tumour progression. Breast Cancer Res. 3, 373–379 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rinn, J. L. et al. A Systems biology approach to anatomic diversity of skin. J. Invest. Dermatol. 128, 776–782 (2008).

    CAS  PubMed  Google Scholar 

  77. Liu, S. et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71, 614–624 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kiskowski, M. A. et al. Role for stromal heterogeneity in prostate tumorigenesis. Cancer Res. 71, 3459–3470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Camps, J. L. et al. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl Acad. Sci. USA 87, 75–79 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  83. Shibata, W. et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut 62, 192–200 (2012).

    PubMed  Google Scholar 

  84. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 18, 883–891 (2012).

    CAS  PubMed  Google Scholar 

  85. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 20, 2527–2538 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nature Rev. Cancer 9, 285–293 (2009).

    CAS  Google Scholar 

  88. Ribatti, D., Mangialardi, G. & Vacca, A. Stephen Paget and the 'seed and soil' theory of metastatic dissemination Clin. Exp. Med. 6, 145–149 (2006).

    CAS  PubMed  Google Scholar 

  89. Quigley, D. A. et al. Genetic architecture of murine skin inflammation and tumor susceptibility. Nature 458, 505–508 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhatia, R., McCarthy, J. B. & Verfaillie, C. M. Interferon-α restores normal β1 integrin-mediated inhibition of hematopoietic progenitor proliferation by the marrow microenvironment in chronic myelogenous leukemia. Blood 87, 3883–3891 (1996).

    CAS  PubMed  Google Scholar 

  91. Bhatia, R., Munthe, H. A. & Forman, S. J. Abnormal growth factor modulation of β1-integrin-mediated adhesion in chronic myelogenous leukaemia haematopoietic progenitors. Br. J. Haematol. 115, 845–853 (2001).

    CAS  PubMed  Google Scholar 

  92. Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    CAS  Google Scholar 

  93. Lee, H.-O. et al. Evolution of tumor invasiveness: the adaptive tumor microenvironment landscape model. Cancer Res. 71, 6327–6337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gatenby, R. A., Gillies, R. J. & Brown, J. S. Of cancer and cave fish. Nature Rev. Cancer 11, 237–238 (2011).

    CAS  Google Scholar 

  95. Hahnfeldt, P., Panigrahy, D., Folkman, J. & Hlatky, L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Maley for helpful discussions and apologize to those whose work was not cited owing to space limitations. M.H.B.H. is supported by the US National Aeronautics and Space Administration (NASA) Specialized Center for Research in Radiation Health Effects, grant NNX09AM52G. D.L. is supported by the Hartwell Foundation, the Children's Cancer and Blood Foundation and the Champalimaud Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Helen Barcellos-Hoff, David Lyden or Timothy C. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcellos-Hoff, M., Lyden, D. & Wang, T. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13, 511–518 (2013). https://doi.org/10.1038/nrc3536

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3536

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer