Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Cancer research: past, present and future

Abstract

Research into cancer over the past 10 years has diverged enormously, partly based on the large number of new technologies that are now at our finger tips. With areas of cancer research so disparate, it is not always easy to identify where the next new findings and therapies might come from. With this in mind, we asked four leading cancer researchers from around the world what, in their opinion, we have learnt over the past 10 years and how we should progress in the next 10 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  2. Ngoma, T. World Health Organization cancer priorities in developing countries. Ann. Oncol. 17, viii9–viii14 (2006).

    Article  Google Scholar 

  3. Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature Rev. Cancer 10, 878–889 (2010).

    Article  CAS  Google Scholar 

  4. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  Google Scholar 

  5. Broderick, P. et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 69, 6633–6641 (2009).

    Article  CAS  Google Scholar 

  6. Teodoridis, J. M., Hardie, C. & Brown, R. CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett. 268, 177–186 (2008).

    Article  CAS  Google Scholar 

  7. de Bono, J. S. & Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

    Article  CAS  Google Scholar 

  8. Quatrale, A. E. et al. EGFR tyrosine kinases inhibitors in cancer treatment: in vitro and in vivo evidence. Front. Biosci. 16, 1962–1972 (2011).

    Article  CAS  Google Scholar 

  9. Collins, F. S. and A. D. Barker . Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci. Am. 296, 50–57 (2007).

    Article  CAS  Google Scholar 

  10. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  Google Scholar 

  11. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  12. Fanidi, A. et al. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–555 (1992).

    Article  CAS  Google Scholar 

  13. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  14. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010).

    Article  CAS  Google Scholar 

  15. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  Google Scholar 

  16. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  Google Scholar 

  17. Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).

    Article  CAS  Google Scholar 

  18. Poulikakos, P. I. et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).

    Article  CAS  Google Scholar 

  19. Villa, L. L. HPV prophylactic vaccination: the first years and what to expect from now. Cancer Lett. 305, 106–112 (2011).

    Article  CAS  Google Scholar 

  20. Human papillomaviruses. IARC Monogr. Eval Carcinog. Risks Hum. 64, 1–378 (1995).

  21. Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov. 9, 775–789 (2010).

    Article  CAS  Google Scholar 

  22. McDermott, U., Downing, J. R. & Stratton, M. R. Genomics and the continuum of cancer care. N. Engl. J. Med. 364, 340–350 (2011).

    Article  CAS  Google Scholar 

  23. Beatson, G. On the treatment of inoperable cases of carinoma of the mamma: suggesitons for a new method of treatment with illustrative cases. Lancet 148, 104–107 (1896).

    Article  Google Scholar 

  24. Vultur, A., Villanueva, J. & Herlyn, M. Targeting BRAF in advanced melanoma: a first step toward manageable disease. Clin. Cancer Res. 17, 1658–1663 (2011).

    Article  CAS  Google Scholar 

  25. Yen, K. E., Bittinger, M. A., Su, S. M. & Fantin, V. R. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29, 6409–6417 (2010).

    Article  CAS  Google Scholar 

  26. Brough, R., Frankum, J. R., Costa-Cabral, S., Lord, C. J. & Ashworth, A. Searching for synthetic lethality in cancer. Curr. Opin. Genet. Dev. 21, 34–41 (2011).

    Article  CAS  Google Scholar 

  27. Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas-dependence and resistance. Cancer Cell 19, 11–15 (2011).

    Article  CAS  Google Scholar 

  28. Workman, P. & de Bono, J. Targeted therapeutics for cancer treatment: major progress towards personalised molecular medicine. Curr. Opin. Pharmacol. 8, 359–362 (2008).

    Article  CAS  Google Scholar 

  29. Carden, C. P., Banerji, U., Kaye, S. B., Workman, P. & de Bono, J. S. From darkness to light with biomarkers in early clinical trials of cancer drugs. Clin. Pharmacol. Ther. 85, 131–133 (2009).

    Article  CAS  Google Scholar 

  30. Chin L, H. W., Getz, G & Meyerson, M. Making sense of cancer genomic data. Genes Dev. 25, 534–555 (2011).

    Article  Google Scholar 

  31. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  32. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  33. Schreiber, S. L. et al. Towards patient-based cancer therapeutics. Nature Biotech. 28, 904–906 (2010).

    Article  CAS  Google Scholar 

  34. Stommel, J. M. et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290 (2007).

    Article  CAS  Google Scholar 

  35. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  Google Scholar 

  36. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  Google Scholar 

  37. Shackleton, M. et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    Article  CAS  Google Scholar 

  38. Tuveson, D. A. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001).

    Article  CAS  Google Scholar 

  39. Solimini, N. L. et al. Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130, 986–988 (2007).

    Article  CAS  Google Scholar 

  40. Cairns, R. A. et al. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  41. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  Google Scholar 

  42. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  Google Scholar 

  43. DeBerardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  Google Scholar 

  44. McAllister, S. S. & Weinberg, R. A. Tumor-host interactions: a far-reaching relationship. J. Clin. Oncol. 28, 4022–4028 (2010).

    Article  Google Scholar 

  45. Wilson, A. J. Inhibition of protein-protein interactions using designed molecules. Chem. Soc. Rev. 38, 3289–3300 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.E. is a research fellow of the National Health and Medical Research Council Australia. Y.C. thanks Z. Dong and A.M. Bode, The Hormel Institute, University of Minnesota, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Cao, Ronald A. DePinho, Matthias Ernst or Karen Vousden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., DePinho, R., Ernst, M. et al. Cancer research: past, present and future. Nat Rev Cancer 11, 749–754 (2011). https://doi.org/10.1038/nrc3138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3138

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer