Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

How patients have benefited from mouse models of acute promyelocytic leukaemia

Abstract

One of the challenges of studying anticancer therapies is that effects observed in cell lines or mouse models are not always good indicators of clinical trial results. The mouse model of acute promyelocytic leukaemia has bucked this trend, as targeted therapies such as retinoic acid and arsenic induce differentiation and clearance of leukaemia cells in both mice and humans. This mouse model has also provided important mechanistic insights into the combinatorial effects of these agents and has promoted combined therapies that have shown recent success in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of transcriptional repression by PML–RARA.
Figure 2: Effects of retinoic acid and arsenic on PML–RARA.

Similar content being viewed by others

References

  1. Rangarajan, A. & Weinberg, R. A. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer 3, 952–959 (2003).

    Article  CAS  Google Scholar 

  2. Vickers, M., Jackson, G. & Taylor, P. The incidence of acute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia 14, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Gilliland, D. G. & Tallman, M. S. Focus on acute leukemias. Cancer Cell 1, 417–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. de Thé, H. et al. The PML–RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  PubMed  Google Scholar 

  5. de Thé, H., Chomienne, C., Lanotte, M., Degos, L. & Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347, 558–561 (1990).

    Article  PubMed  Google Scholar 

  6. Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell 108, 165–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Daniel, M. T. et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82, 1858–1867 (1993).

    CAS  PubMed  Google Scholar 

  8. Minucci, S. et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol. Cell 5, 811–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, R. & Evans, R. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol. Cell 5, 821–830 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Perez, A. et al. PML/RAR homodimers: distinct binding properties and heteromeric interactions with RXR. EMBO J. 12, 3171–3182 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamashev, D., Vitoux, D. & de Thé, H. PML–RARA–RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J. Exp. Med. 199, 1163–1174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, D. et al. A PMLRARα transgene initiates murine acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 2551–2556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grisolano, J. L., Wesselschmidt, R. L., Pelicci, P. G. & Ley, T. J. Altered myeloid development and acute leukemia in transgenic mice expressing PML–RARα under control of cathepsin G regulatory sequences. Blood 89, 376–387 (1997).

    CAS  PubMed  Google Scholar 

  14. He, L. Z. et al. Acute leukemia with promyelocytic features in PML/RARα transgenic mice. Proc. Natl Acad. Sci. USA 94, 5302–5307 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. David, G., Terris, B., Marchio, A., Lavau, C. & Dejean, A. The acute promyelocytic leukemia PML–RAR α protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice. Oncogene 14, 1547–1554 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Early, E. et al. Transgenic expression of PML/RARα impairs myelopoiesis. Proc. Natl Acad. Sci. USA 93, 7900–7904 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Westervelt, P. et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARα expression. Blood 102, 1857–1865 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kogan, S. C. et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor α chimeric protein (PMLRARα) to block neutrophil differentiation and initiate acute leukemia. J. Exp. Med. 193, 531–544 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane, A. A. & Ley, T. J. Neutrophil elastase cleaves PML–RARα and is important for the development of acute promyelocytic leukemia in mice. Cell 115, 305–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. He, L. Z. et al. Distinct interactions of PML–RARα and PLZF–RARα with co-repressors determine differential responses to RA in APL. Nature Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. He, L. et al. Two critical hits for promyelocytic leukemia. Mol. Cell 6, 1131–1141 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Pollock, J. L. et al. A bcr-3 isoform of RARα–PML potentiates the development of PML–RARα-driven acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 96, 15103–15108 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rego, E. M. & Pandolfi, P. P. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders? Trends Mol. Med. 8, 396–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Meani, N. et al. Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene 24, 3358–3368 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Gottifredi, V. & Prives, C. p53 and PML: new partners in tumor suppression. Trends Cell Biol. 11, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biol. 6, 665–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bischof, O., Nacerddine, K. & Dejean, A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol. Cell. Biol. 25, 1013–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mallette, F. A., Goumard, S., Gaumont-Leclerc, M. F., Moiseeva, O. & Ferbeyre, G. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23, 91–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Insinga, A. et al. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. EMBO J. 23, 1144–1154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, J. et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 7, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Lallemand-Breitenbach, V. et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As(2)O(3)-induced PML or PML/retinoic acid receptor α degradation. J. Exp. Med. 193, 1361–1372 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, C. C., Lin, D. Y., Fang, H. I., Chen, R. H. & Shih, H. M. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J. Biol. Chem. 280, 10164–10173 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Warrell, R., de Thé, H., Wang, Z. & Degos, L. Acute promyelocytic leukemia. New Engl. J. Med. 329, 177–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, J., Chen, Z., Lallemand-Breitenbach, V. & de Thé, H . How acute promyelocytic leukaemia revived arsenic. Nature Rev. Cancer 2, 705–713 (2002).

    Article  CAS  Google Scholar 

  38. Zheng, P. Z. et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc. Natl Acad. Sci. USA 102, 7653–7658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao, W., Benedetti, L., Lamph, W. W., Nervi, C. & Miller, W. H. J. A retinoid-resistant acute promyelocytic leukemia subclone expresses a dominant negative PML–RAR α mutation. Blood 89, 4282–4289 (1997).

    CAS  PubMed  Google Scholar 

  42. Zhou, D. C. et al. Frequent mutations in the ligand-binding domain of PML–RAR α after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 99, 1356–1363 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Hayakawa, F. & Privalsky, M. L. Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5, 389–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Rego, E. M., He, L. Z., Warrell, R. P. Jr, Wang, Z. G. & Pandolfi, P. P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML–RARα and PLZF–RARα oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lallemand-Breitenbach, V. et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J. Exp. Med. 189, 1043–1052 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muto, A. et al. A novel differentiation-inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia 15, 1176–1184 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Benoit, G., Roussel, M., Pendino, F., Segal-Bendirdjian, E. & Lanotte, M. Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation. Oncogene 20, 7161–7177 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, Q. et al. Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. Leukemia 18, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Quenech'Du, N., Ruchaud, S., Khelef, N., Guiso, N. & Lanotte, M. A sustained increase in the endogenous level of cAMP reduces the retinoid concentration required for APL cell maturation to near physiological levels. Leukemia 12, 1829–1833 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Ruchaud, S. et al. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. Proc. Natl Acad. Sci. USA 91, 8428–8432 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guillemin, M. C. et al. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J. Exp. Med. 196, 1373–1380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benoit, G. et al. RAR-independent RXR signaling induces t(15;17) leukemia cell maturation. EMBO J. 18, 7011–7018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Germain, P., Iyer, J., Zechel, C. & Gronemeyer, H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415, 187–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Altucci, L. et al. Rexinoid-triggered differentiation and tumours selective apoptosis of AML by protein kinase-A-mediated de-subordination of RXR. Cancer Res. (in press).

  55. Shen, Z. X. et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 101, 5328–5335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Warrell, R. P. Jr., He, L. Z., Richon, V., Calleja, E. & Pandolfi, P. P. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J. Natl Cancer Inst. 90, 1621–1625 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. He, L. Z. et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Invest. 108, 1321–1330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Insinga, A. et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Med. 11, 71–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med. 11, 77–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ferrara, F. F. et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res. 61, 2–7 (2001).

    PubMed  Google Scholar 

  61. Kogan, S. C., Hong, S. H., Shultz, D. B., Privalsky, M. L. & Bishop, J. M. Leukemia initiated by PMLRARα: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood 95, 1541–1550 (2000).

    CAS  PubMed  Google Scholar 

  62. Licht, J. D. et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85, 1083–1094 (1995).

    CAS  PubMed  Google Scholar 

  63. Jansen, J. H. et al. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood 94, 39–45 (1999).

    CAS  PubMed  Google Scholar 

  64. Petti, M. C. et al. Complete remission through blast cell differentiation in PLZF/RARα-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood 100, 1065–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Koken, M. H. M. et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene 18, 1113–1118 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kitamura, K. et al. Histone deacetylase inhibitor, but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br. J. Haematol. 108, 696–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Jing, Y. et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood 97, 264–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, G. et al. An efficient therapeutic approach to patients with acute promyelocytic leukemia using a combination of arsenic trioxide with low-dose all-trans retinoic acid. Hematol. Oncol. 22, 63–71 (2004).

    Article  PubMed  Google Scholar 

  69. Zhu, Q. et al. Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subtends a novel signaling cross-talk. Blood 99, 1014–1022 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Kiyoi, H. et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 11, 1447–1452 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Callens, C. et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 7, 11543–1160 (2005).

    Google Scholar 

  72. Kelly, L. M. et al. PML/RARα and FLT3–ITD induce an APL-like disease in a mouse model. Proc. Natl Acad. Sci. USA 99, 8283–8288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sohal, J. et al. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 101, 3188–3197 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Zimonjic, D. B., Pollock, J. L., Westervelt, P., Popescu, N. C. & Ley, T. J. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc. Natl Acad. Sci. USA 97, 13306–13311 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Le Beau, M. M., Bitts, S., Davis, E. M. & Kogan, S. C. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood 99, 2985–2991 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Walter, M. J. et al. Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol. Cell. Biol. 24, 10882–10893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weinstein, I. B. Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Taneja, R. et al. Phosphorylation of activation functions AF-1 and AF-2 of RAR α and RAR γ is indispensable for differentiation of F9 cells on retinoic acid and cAMP treatment. EMBO J. 16, 6452–6465 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parrella, E. et al. Phosphodiesterase IV inhibition by piclamilast potentiates the cyto-differentiating action of retinoids in myeloid leukemia cells: cross-talk between the cAMP and the retinoic acid signaling pathways. J. Biol. Chem. 279, 42026–42040 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Bernardi, R., Grisendi, S. & Pandolfi, P. P. Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 21, 3445–3458 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Melnick, A. & Licht, J. D. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167–3215 (1999).

    CAS  PubMed  Google Scholar 

  83. Gianni, M. et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood 91, 4300–4010 (1998).

    CAS  PubMed  Google Scholar 

  84. Shao, W. et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RARα protein in acute promyelocytic leukemia cells. J. Natl Cancer Inst. 90, 124–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Cheng, G. X. et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF–RARα and NPM–RARα. Proc. Natl Acad. Sci. USA 96, 6318–6323 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues de Thé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

DAXX

p53

PLZF

PML

RARA

RXR

SMRT

SUMO

National Cancer Institute

acute promyelocytic leukaemia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lallemand-Breitenbach, V., Zhu, J., Kogan, S. et al. How patients have benefited from mouse models of acute promyelocytic leukaemia. Nat Rev Cancer 5, 821–827 (2005). https://doi.org/10.1038/nrc1719

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing