Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Direct, long-term intrathecal application of therapeutics to the rodent CNS

Abstract

Systemic application of therapeutics to the CNS tissue often results in subtherapeutic drug levels, because of restricted and selective penetration through the blood–brain barrier (BBB). Here, we give a detailed description of a standardized technique for intrathecal drug delivery in rodents, analogous to the technique used in humans. The intrathecal drug delivery method bypasses the BBB and thereby offers key advantages over oral or intravenous administration, such as maximized local drug doses with minimal systemic side effects. We describe how to deliver antibodies or drugs over several days or weeks from a s.c. minipump and a fine catheter inserted into the subdural space over the spinal cord (20 min operative time) or into the cisterna magna (10 min operative time). Drug levels can be sampled by quick and minimally invasive cerebrospinal fluid (CSF) collection from the cisterna magna (5 min procedure time). These techniques enable targeted application of any compound to the CNS for therapeutic studies in a wide range of CNS disease rodent models. Basic surgery skills are helpful for carrying out the procedures described in this protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological appearance of neuronal architecture, myelin or astrocyte and microglia reactivity 2 h and 5 d after catheter insertion over the lumbar spinal cord.
Figure 2: Assembly of catheters.
Figure 3: Catheter implantation into the intrathecal space of the lumbar spinal cord—surgery protocol.
Figure 4: Catheter implantation into the cisterna magna—surgery protocol.
Figure 5: Forelimb and hind-limb fine motor skill performance of rats after intrathecal catheter implantation.

Similar content being viewed by others

References

  1. Parrish, K.E., Sarkaria, J.N. & Elmquist, W.F. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin. Pharmacol. Ther. 97, 336–346 (2015).

    Article  CAS  Google Scholar 

  2. Frank, R.T., Aboody, K.S. & Najbauer, J. Strategies for enhancing antibody delivery to the brain. Biochim. Biophys. Acta 1816, 191–198 (2011).

    CAS  PubMed  Google Scholar 

  3. Pepinsky, R.B. et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J. Pharmacol. Exp. Ther. 339, 519–529 (2011).

    Article  CAS  Google Scholar 

  4. Sampson, F.C., Hayward, A., Evans, G., Morton, R. & Collett, B. Functional benefits and cost/benefit analysis of continuous intrathecal baclofen infusion for the management of severe spasticity. J. Neurosurg. 96, 1052–1057 (2002).

    Article  Google Scholar 

  5. Gold, R. & Oreja-Guevara, C. Advances in the management of multiple sclerosis spasticity: multiple sclerosis spasticity guidelines. Expert Rev. Neurother. 13, 55–59 (2013).

    Article  Google Scholar 

  6. Nance, P. et al. Intrathecal baclofen therapy for adults with spinal spasticity: therapeutic efficacy and effect on hospital admissions. Can. J. Neurol. Sci. 22, 22–29 (1995).

    Article  CAS  Google Scholar 

  7. Dworkin, R.H. et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain 154, 2249–2261 (2013).

    Article  Google Scholar 

  8. Garg, T., Bhandari, S., Rath, G. & Goyal, A.K. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J. Drug Target. 23, 865–887 (2015).

    Article  CAS  Google Scholar 

  9. Bottros, M.M. & Christo, P.J. Current perspectives on intrathecal drug delivery. J. Pain Res. 7, 615–626 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Sindou, M. Neurosurgery for Spasticity: A Practical Guide for Treating Children and Adults (Springer, 2014).

  11. Dario, A. & Tomei, G. A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf. 27, 799–818 (2004).

    Article  CAS  Google Scholar 

  12. Van Damme, P. & Robberecht, W. Developments in treatments for amyotrophic lateral sclerosis via intracerebroventricular or intrathecal delivery. Expert Opin. Investig. Drugs 23, 955–963 (2014).

    Article  CAS  Google Scholar 

  13. Bonnan, M. et al. Intrathecal rituximab therapy in multiple sclerosis: review of evidence supporting the need for future trials. Curr. Drug Targets 15, 1205–1214 (2014).

    Article  CAS  Google Scholar 

  14. Yaksh, T.L. & Rudy, T.A. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17, 1031–1036 (1976).

    Article  CAS  Google Scholar 

  15. Yaksh, T.L. & Rudy, T.A. Analgesia mediated by a direct spinal action of narcotics. Science 192, 1357–1358 (1976).

    Article  CAS  Google Scholar 

  16. LoPachin, R.M., Rudy, T.A. & Yaksh, T.L. An improved method for chronic catheterization of the rat spinal subarachnoid space. Physiol. Behav. 27, 559–561 (1981).

    Article  CAS  Google Scholar 

  17. Yaksh, T.L. & Stevens, C.W. Simple catheter preparation for permitting bolus intrathecal administration during chronic intrathecal infusion. Pharmacol. Biochem. Behav. 25, 483–485 (1986).

    Article  CAS  Google Scholar 

  18. Hayes, C.S., Mulkmus, S.A., Cizkova, D., Yaksh, T.L. & Hua, X.Y. A double-lumen intrathecal catheter for studies of modulation of spinal opiate tolerance. J. Neurosci. Methods 126, 165–173 (2003).

    Article  Google Scholar 

  19. Storkson, R.V., Kjorsvik, A., Tjolsen, A. & Hole, K. Lumbar catheterization of the spinal subarachnoid space in the rat. J. Neurosci. Methods 65, 167–172 (1996).

    Article  CAS  Google Scholar 

  20. Pogatzki, E.M., Zahn, P.K. & Brennan, T.J. Lumbar catheterization of the subarachnoid space with a 32-gauge polyurethane catheter in the rat. Eur. J. Pain 4, 111–113 (2000).

    Article  CAS  Google Scholar 

  21. Sakura, S., Hashimoto, K., Bollen, A.W., Ciriales, R. & Drasner, K. Intrathecal catheterization in the rat. Improved technique for morphologic analysis of drug-induced injury. Anesthesiology 85, 1184–1189 (1996).

    Article  CAS  Google Scholar 

  22. Tsang, B.K., He, Z., Ma, T., Ho, I.K. & Eichhorn, J.H. Decreased paralysis and better motor coordination with microspinal versus PE10 intrathecal catheters in pain study rats. Anesth. Analg. 84, 591–594 (1997).

    CAS  PubMed  Google Scholar 

  23. van den Hoogen, R.H. & Colpaert, F.C. Long term catheterization of the lumbar epidural space in rats. Pharmacol., Biochem., Behav. 15, 515–516 (1981).

    Article  CAS  Google Scholar 

  24. Zhao, R.R. et al. Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur. J. Neurosci. 38, 2946–2961 (2013).

    PubMed  Google Scholar 

  25. Gonzenbach, R.R. et al. Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. J. Neurotrauma 29, 567–578 (2012).

    Article  Google Scholar 

  26. Wahl, A.S. et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 344, 1250–1255 (2014).

    Article  CAS  Google Scholar 

  27. Gonzenbach, R.R. et al. Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats. Ann. Neurol. 68, 48–57 (2010).

    Article  Google Scholar 

  28. Malkmus, S.A. & Yaksh, T.L. Intrathecal catheterization and drug delivery in the rat. Methods Mol. Med. 99, 109–121 (2004).

    PubMed  Google Scholar 

  29. Brosamle, C., Huber, A.B., Fiedler, M., Skerra, A. & Schwab, M.E. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J. Neurosci. 20, 8061–8068 (2000).

    Article  CAS  Google Scholar 

  30. Liebscher, T. et al. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann. Neurol. 58, 706–719 (2005).

    Article  CAS  Google Scholar 

  31. Boster, A.L. et al. Best practices for intrathecal baclofen therapy: dosing and long-term management. Neuromodulation. 19, 623–631 (2016).

    Article  Google Scholar 

  32. Filli, L., Zorner, B., Weinmann, O. & Schwab, M.E. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Brain 134, 2261–2273 (2011).

    Article  Google Scholar 

  33. Yaksh, T. & Malkmus, S. Animal models of intrathecal and epidural drug delivery. Spinal Drug Deliv. 1, 317–344 (1999).

    Google Scholar 

  34. Katzung, B.G., Masters, S.B. & Trevor, A.J. Basic & Clinical Pharmacology Vol. 8 (Lange Medical Books/McGraw-Hill, New York, 2004).

  35. Essex Wynter, W. Four cases of tubercular meningitis in which paracentesis of the theca vertebralis was performed for the relief of fluid pressure. Lancet 137, 981–982 (1891).

    Article  Google Scholar 

  36. Shen, D.D., Artru, A.A. & Adkison, K.K. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv. Drug Deliv. Rev. 56, 1825–1857 (2004).

    Article  CAS  Google Scholar 

  37. Sakka, L., Coll, G. & Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 128, 309–316 (2011).

    Article  CAS  Google Scholar 

  38. Carp, R.I., Davidson, A.L. & Merz, P.A. A method for obtaining cerebrospinal fluid from mice. Res. Vet. Sci. 12, 499 (1971).

    Article  CAS  Google Scholar 

  39. Long, J.B., Mobley, W.C. & Holaday, J.W. Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat. I. Injection procedures modify pharmacological responses. J. Pharmacol. Exp. Ther. 246, 1158–1166 (1988).

    CAS  PubMed  Google Scholar 

  40. Westergren, I. & Johansson, B.B. Changes in physiological parameters of rat cerebrospinal fluid during chronic sampling: evaluation of two sampling methods. Brain Res. Bull. 27, 283–286 (1991).

    Article  CAS  Google Scholar 

  41. Pegg, C.C., He, C., Stroink, A.R., Kattner, K.A. & Wang, C.X. Technique for collection of cerebrospinal fluid from the cisterna magna in rat. J. Neurosci. Methods 187, 8–12 (2010).

    Article  Google Scholar 

  42. Butler, M. et al. Spinal distribution and metabolism of 2′-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats. Neuroscience 131, 705–715 (2005).

    Article  CAS  Google Scholar 

  43. Jasmin, L. & Ohara, P.T. Long-term intrathecal catheterization in the rat. J. Neurosci. Methods 110, 81–89 (2001).

    Article  CAS  Google Scholar 

  44. Jones, L.L. & Tuszynski, M.H. Chronic intrathecal infusions after spinal cord injury cause scarring and compression. Microsc. Res. Tech. 54, 317–324 (2001).

    Article  CAS  Google Scholar 

  45. Begley, D. et al. The role of brain extracellular fluid production and efflux mechanisms in drug transport to the brain. The Blood-Brain Barrier and Drug Delivery to the CNS, Vol. 1, 93–108 (CRC Press, 2000).

  46. Silverberg, G.D. et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology 57, 1763–1766 (2001).

    Article  CAS  Google Scholar 

  47. Chiu, C. et al. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 9, 3 (2012).

    Article  CAS  Google Scholar 

  48. Ummenhofer, W.C., Arends, R.H., Shen, D.D. & Bernards, C.M. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology 92, 739–753 (2000).

    Article  CAS  Google Scholar 

  49. Krupp, J.L. & Bernards, C.M. Pharmacokinetics of intrathecal oligodeoxynucleotides. Anesthesiology 100, 315–322 (2004).

    Article  CAS  Google Scholar 

  50. Penn, R.D., Kroin, J.S., York, M.M. & Cedarbaum, J.M. Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 40, 94–99 (1997).

    CAS  PubMed  Google Scholar 

  51. Weinmann, O. et al. Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Mol. Cell. Neurosci. 32, 161–173 (2006).

    Article  CAS  Google Scholar 

  52. Zemmar, A. et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J. Neurosci. 34, 8685–8698 (2014).

    Article  Google Scholar 

  53. Vuillemenot, B.R. et al. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: safety, pharmacokinetics, and distribution. Toxicol. Appl. Pharmacol. 277, 49–57 (2014).

    Article  CAS  Google Scholar 

  54. Samaranch, L. et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum. Gene Therapy 24, 526–532 (2013).

    Article  CAS  Google Scholar 

  55. Salegio, E.A. et al. Distribution of nanoparticles throughout the cerebral cortex of rodents and non-human primates: implications for gene and drug therapy. Front. Neuroanat. 8, 9 (2014).

    Article  Google Scholar 

  56. Nedergaard, M. Neuroscience. Garbage truck of the brain. Science 340, 1529–1530 (2013).

    Article  CAS  Google Scholar 

  57. Iliff, J.J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  Google Scholar 

  58. Banks, W.A. The CNS as a target for peptides and peptide-based drugs. Expert Opin. Drug Deliv. 3, 707–712 (2006).

    Article  CAS  Google Scholar 

  59. Cooper, P.R. et al. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 1534, 13–21 (2013).

    Article  CAS  Google Scholar 

  60. Button, K.S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  CAS  Google Scholar 

  61. Pardridge, W.M. Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. Drug Discov. 1, 131–139 (2002).

    Article  CAS  Google Scholar 

  62. Yu, Y.J. et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154 (2014).

    Article  Google Scholar 

  63. Vlieghe, P. & Khrestchatisky, M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med. Res. Rev. 33, 457–516 (2013).

    Article  CAS  Google Scholar 

  64. Tsai, S.Y., Papadopoulos, C.M., Schwab, M.E. & Kartje, G.L. Delayed anti-nogo-a therapy improves function after chronic stroke in adult rats. Stroke 42, 186–190 (2011).

    Article  CAS  Google Scholar 

  65. Keeley, R.J., Bye, C., Trow, J. & McDonald, R.J. Strain and sex differences in brain and behaviour of adult rats: learning and memory, anxiety and volumetric estimates. Behav. Brain Res. 288, 118–131 (2015).

    Article  CAS  Google Scholar 

  66. Jonasson, Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci. Biobehav. Rev. 28, 811–825 (2005).

    Article  Google Scholar 

  67. Whishaw, I.Q. & Pellis, S.M. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav. Brain Res. 41, 49–59 (1990).

    Article  CAS  Google Scholar 

  68. Montoya, C.P., Campbell-Hope, L.J., Pemberton, K.D. & Dunnett, S.B. The 'staircase test': a measure of independent forelimb reaching and grasping abilities in rats. J. Neurosci. Methods 36, 219–228 (1991).

    Article  CAS  Google Scholar 

  69. Soblosky, J.S., Colgin, L.L., Chorney-Lane, D., Davidson, J.F. & Carey, M.E. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats. J. Neurosci. Methods 78, 75–83 (1997).

    Article  CAS  Google Scholar 

  70. Maier, I.C. et al. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J. Neurosci. 28, 9386–9403 (2008).

    Article  CAS  Google Scholar 

  71. Herrlich, S., Spieth, S., Messner, S. & Zengerle, R. Osmotic micropumps for drug delivery. Adv. Drug Deliv. Rev. 64, 1617–1627 (2012).

    Article  CAS  Google Scholar 

  72. Pritchett-Corning, K. et al. Handbook of Clinical Signs in Rodents and Rabbits 1 1–136 (Charles River Laboratories, 2010).

    Google Scholar 

  73. Gelderd, J.B. & Chopin, S.F. The vertebral level of origin of spinal nerves in the rat. Anat. Rec. 188, 45–47 (1977).

    Article  CAS  Google Scholar 

  74. Harrison, M. et al. Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage 68, 22–29 (2013).

    Article  Google Scholar 

  75. Ngai, S.H., Berkowitz, B.A., Yang, J.C., Hempstead, J. & Spector, S. Pharmacokinetics of naloxone in rats and in man: basis for its potency and short duration of action. Anesthesiology 44, 398–401 (1976).

    Article  CAS  Google Scholar 

  76. Quintela, T. et al. Sex-related differences in rat choroid plexus and cerebrospinal fluid: a cDNA microarray and proteomic analysis J. Neuroendocrinol. 28 http://dx.doi/org/10.1111/jne.12340 (2016).

  77. Strohl, K.P. et al. Ventilation and metabolism among rat strains. J. Appl. Physiol. 82, 317–323 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swiss National Science Foundation (to M.E.S.), the Christopher and Dana Reeve Foundation, the Swiss MS Society, the Hartmann-Müller Foundation, Zurich, the Desirée-and-Niels-Yde Foundation (to B.V.I.) and two MD–PhD fellowships from the Swiss National Science Foundation (no. 323530_151488, to B.V.I., and no. 323630_151489, to M.P.S.). We thank N.K. Medtner and F. Busoni for help with the surgery.

Author information

Authors and Affiliations

Authors

Contributions

B.V.I., L.S. and M.G. developed the operations. B.V.I., J.K. and M.P.S. performed the operations. J.K., B.V.I., N.G. and A.C.M. provided figures. J.K. designed graphics and processed videos. B.V.I., M.E.S. and M.P.S. wrote the manuscript. M.E.S., B.V.I. and M.L. contributed to conceptual development.

Corresponding author

Correspondence to Benjamin V Ineichen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures 1 and 2

Supplementary Figure 1 Direct intrathecal application of antibodies and drugs to the rodent central nervous system: spinal cord. Supplementary Figure 2 Direct intrathecal application of antibodies and drugs to the rodent central nervous system: cisterna magna. (PDF 1747 kb)

Catheter implantation over the lumbar spinal cord. (MP4 28825 kb)

Catheter implantation into the cisterna magna. (MOV 30308 kb)

Cerebrospinal fluid sampling. (MP4 7239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ineichen, B., Schnell, L., Gullo, M. et al. Direct, long-term intrathecal application of therapeutics to the rodent CNS. Nat Protoc 12, 104–121 (2017). https://doi.org/10.1038/nprot.2016.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research