Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites

Abstract

The procedures described here are designed for engineering Saccharomyces cerevisiae to produce sesquiterpenes with an aim to either increase product titers or to simply generate a quantity of product sufficient for identification and/or downstream experimentation. Engineering high-level sesquiterpene production in S. cerevisiae often requires iterations of strain modifications and metabolite analysis. To address the latter, the methods described here were tailored for robust measurement of metabolites that we have found to be fundamental indicators of pathway flux, using only gas chromatography and mass spectrometry (GC-MS) instrumentation. Thus, by focusing on heterologous production of sesquiterpenes via the mevalonate (MEV) pathway in S. cerevisiae, we detail procedures for extraction and detection of the key pathway metabolites MEV, squalene and ergosterol, as well as the farnesyl pyrophosphate (FPP)-derived side products farnesol and nerolidol. Analysis of these compounds is important for quality control, because they are possible indicators of pathway imbalance. As many of the sesquiterpene synthase (STS) genes encountered in nature are of plant origin and often not optimal for expression in yeast, we provide guidelines for designing gene expression cassettes to enable expression in S. cerevisiae. As a case study for these protocols, we have selected the sesquiterpene amorphadiene, native to Artemisia annua and related plants. The analytical steps can be completed within 1–2 working days, and a typical experiment might take 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key metabolites of the S. cerevisiae mevalonate pathway and major farnesyl-pyrophosphate (farnesyl-PP) side products.
Figure 2: Overview of processes involved in engineering S. cerevisiae for sesquiterpene production.
Figure 3: GC-MS chromatograms (representing ions 189 and 204) relevant to quantification of the sesquiterpene amorphadiene and FPP-derived products.
Figure 4: GC-MS chromatograms (representing ions 58, 71, 189 and 204) relevant to quantification of mevalonolactone and the internal standard, caryophyllene.
Figure 5: GC-MS chromatograms (representing ions 218, 386 and 396) relevant to quantification of intracellular ergosterol and squalene.

Similar content being viewed by others

References

  1. Westfall, P.J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA 109, E111–E118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Paddon, C.J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Peralta-Yahya, P.P. et al. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2, 483 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Xie, X., Kirby, J. & Keasling, J.D. Functional characterization of four sesquiterpene synthases from Ricinus communis (castor bean). Phytochemistry 78, 20–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Baidoo, E.E.K., Benke, P.I. & Keasling, J.D. in Microb. Syst. Biol. (ed. Navid, A.) 215–278 (Humana Press, 2012).

  7. Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. 503, 1–24 (1990).

    Article  CAS  Google Scholar 

  8. Schurig, V. Gas chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. new analytical methods (24). Angew. Chem. Int. Ed. Engl. 23, 747–765 (1984).

    Article  Google Scholar 

  9. König, W.A. Enantioselective capillary gas chromatography in the investigation of stereochemical correlations of terpenoids. Chirality 10, 499–504 (1998).

    Article  Google Scholar 

  10. Joulain, D. & König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons (E.B.-Verlag, 1998).

  11. Adams, R.P. Identification of Essential Oils by Ion-Trap Mass Spectroscopy (Academic Press, 1989).

  12. Wiley. Wiley Registry 10th Edition/NIST 2012 Mass Spectral Library http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118616111.html (Wiley, 2013).

  13. Mondello, L. FFNSC2: Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database 2nd edn. (Wiley, 2011).

  14. de Hoffmann, E. Mass Spectrometry: Principles and Applications (Wiley, 2007).

  15. Rücker, G., Neugebauer, M. & Daldrup, B. Mass spectrometric identification of unsaturated terpene hydrocarbons by GC-MS after derivatization with trioxo(tert-butylimido)osmium(VIII). Flavour Fragr. J. 5, 1–18 (1990).

    Article  Google Scholar 

  16. Brocks, J.J. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Buckingham, J. Dictionary of Natural Products, Web Version 2004 http://dnp.chemnetbase.com.

  18. Miller, D.J. & Allemann, R.K. Sesquiterpene synthases: passive catalysts or active players? Nat. Prod. Rep. 29, 60–71 (2011).

    Article  PubMed  Google Scholar 

  19. Martin, D.M. et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirby, J. & Keasling, J.D. Metabolic engineering of microorganisms for isoprenoid production. Nat. Prod. Rep. 25, 656–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Keeling, C.I. et al. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol. 11, 43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Challis, G.L. Genome mining for novel natural product discovery. J. Med. Chem. 51, 2618–2628 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kirby, J. & Keasling, J.D. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60, 335–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Nieuwenhuizen, N.J. et al. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol. 161, 787–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Hochmuth, K., König, W.A. & Julain, D. MassFinder 4 software tool (http://massfinder.com/wiki/MassFinder_4) (Hochmuth Scientific Consulting).

  26. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy (Allured Pub. Corp, 2007).

  27. Da Silva, N.A. & Srikrishnan, S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 12, 197–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Gatignol, A., Dassain, M. & Tiraby, G. Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91, 35–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Partow, S., Siewers, V., Bjørn, S., Nielsen, J. & Maury, J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27, 955–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Nevoigt, E. et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 5266–5273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blount, B.A., Weenink, T., Vasylechko, S. & Ellis, T. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS ONE 7, e33279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Douglas, H.C. & Hawthorne, D.C. Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49, 837–844 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ö, B., Burd, H., Lee, T.S. & Keasling, J.D. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab. Eng. 15, 174–183 (2013).

  34. Romanos, M.A., Scorer, C.A. & Clare, J.J. Foreign gene expression in yeast: a review. Yeast 8, 423–488 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Plotkin, J.B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Kotula, L. & Curtis, P.J. Evaluation of foreign gene codon optimization in yeast: expression of a mouse IG κ chain. Nat. Biotechnol. 9, 1386–1389 (1991).

    Article  CAS  Google Scholar 

  37. Richmond, T. Precompiled codon-usage tables. Genome Biol. 1, reports241 (2000).

    Article  Google Scholar 

  38. Trotta, E. The three-base periodicity and codon usage of coding sequences are correlated with gene expression at the level of transcription elongation. PLoS ONE 6, e21590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marín, A. et al. Relationship between G+C content, ORF length and mRNA concentration in Saccharomyces cerevisiae. Yeast 20, 703–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Zamft, B., Bintu, L., Ishibashi, T. & Bustamante, C. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl. Acad. Sci. USA 109, 8948–8953 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robbins-Pianka, A., Rice, M.D. & Weir, M.P. The mRNA landscape at yeast translation initiation sites. Bioinformatics 26, 2651–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Baim, S.B. & Sherman, F. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 1591–1601 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cigan, A.M., Pabich, E.K. & Donahue, T.F. Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 2964–2975 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pittman, Y.R. & Denver, T.E. Analysis of flanking nucleotide contributions to translation start codon selection in yeast. 24 (meeting abstract)http://www.fasebj.org/cgi/content/meeting_abstract/24/1_MeetingAbstracts/467.6 (2010).

  46. Graber, J.H., McAllister, G.D. & Smith, T.F. Probabilistic prediction of Saccharomyces cerevisiae mRNA 3′-processing sites. Nucleic Acids Res. 30, 1851–1858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wernersson, R. FeatureExtract: extraction of sequence annotation made easy. Nucleic Acids Res. 33, W567–W569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Komar, A.A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Angov, E., Hillier, C.J., Kincaid, R.L. & Lyon, J.A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 3, e2189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. Sriram, S.M. & Kwon, Y.T. The molecular principles of N-end rule recognition. Nat. Struct. Mol. Biol. 17, 1164–1165 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Lucattini, R., Likic, V.A. & Lithgow, T. Bacterial proteins predisposed for targeting to mitochondria. Mol. Biol. Evol. 21, 652–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Mikkelsen, M.D. et al. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 14, 104–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Jensen, N.B. et al. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 238–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Futcher, B. & Carbon, J. Toxic effects of excess cloned centromeres. Mol. Cell. Biol. 6, 2213–2222 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schulman, I.G. & Bloom, K. Genetic dissection of centromere function. Mol. Cell. Biol. 13, 3156–3166 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asadollahi, M.A., Maury, J., Schalk, M., Clark, A. & Nielsen, J. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 106, 86–96 (2010).

    CAS  PubMed  Google Scholar 

  60. Jackson, B.E., Hart-Wells, E.A. & Matsuda, S.P.T. Metabolic engineering to produce sesquiterpenes in yeast. Org. Lett. 5, 1629–1632 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Asadollahi, M.A. et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99, 666–677 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Albertsen, L. et al. Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Env. Microbiol 77, 1033–1040 (2011).

    Article  CAS  Google Scholar 

  63. Scalcinati, G. et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb. Cell Factories 11, 117 (2012).

    Article  CAS  Google Scholar 

  64. Scalcinati, G. et al. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab. Eng. 14, 91–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Beekwilder, J. et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol. J. 12, 174–182 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

S.R. conducted the experiments; S.R., J.K., C.M.D. and J.D.K. wrote the manuscript.

Corresponding author

Correspondence to Jay D Keasling.

Ethics declarations

Competing interests

J.D.K. has a financial interest in Amyris and Lygos. The remaining authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, S., Kirby, J., Denby, C. et al. Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protoc 9, 1980–1996 (2014). https://doi.org/10.1038/nprot.2014.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research