Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Computational reconstruction of cell and tissue surfaces for modeling and data analysis

Abstract

We present a method for the computational reconstruction of the 3-D morphology of biological objects, such as cells, cell conjugates or 3-D arrangements of tissue structures, using data from high-resolution microscopy modalities. The method is based on the iterative optimization of Voronoi representations of the spatial structures. The reconstructions of biological surfaces automatically adapt to morphological features of varying complexity with flexible degrees of resolution. We show how 3-D confocal images of single cells can be used to generate numerical representations of cellular membranes that may serve as the basis for realistic, spatially resolved computational models of membrane processes or intracellular signaling. Another example shows how the protocol can be used to reconstruct tissue boundaries from segmented two-photon image data that facilitate the quantitative analysis of lymphocyte migration behavior in relation to microanatomical structures. Processing time is of the order of minutes depending on data features and reconstruction parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iterative Voronoi mesh optimization illustrated in the 2-D plane.
Figure 2: Binary image generation from fluorescence microscopy data.
Figure 3: Illustration of Voronoi surface elements.
Figure 4: Optimizing surface reconstruction for a given number of vertices/elements (n = 500) for the T cell shown in Figure 2.
Figure 5: Automatic, adaptive surface reconstruction of the T-cell microscopy data shown in Figure 1, minimizing the required number of vertices/elements for a given reconstruction accuracy (ratio of out-of-plane/in-plane resolution 9:1, average cell radius 4.5 μm, compare the scale in Fig. 1).
Figure 6: Surface reconstruction of cell conjugates.
Figure 7: Extraction of and mask generation for germinal center (GC) region.

Similar content being viewed by others

References

  1. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  2. Germain, R.N. et al. An extended vision for dynamic high-resolution intravital immune imaging. Semin. Immunol. 17, 431–441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, X., Meier-Schellersheim, M., Yan, J. & Jin, T. Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J. Cell Biol. 178, 141–153 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Couteau, B., Payan, Y. & Lavallee, S. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures. J. Biomech. 33, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Lorensen, W.E. & Cline, E.C. Marching Cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987).

    Article  Google Scholar 

  6. Bootsma, G.J. & Brodland, G.W. Automated 3-D reconstruction of the surface of live early-stage amphibian embryos. IEEE Trans. Bio-Med. Eng. 52, 1407–1414 (2005).

    Article  Google Scholar 

  7. Yu, X. et al. A novel biomedical meshing algorithm and evaluation based on revised Delaunay and Space Disassembling. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 5091–5094 (2007).

    Google Scholar 

  8. Baker, T.J. Mesh generation: art or science? Progress in Aerospace Sciences 41, 29–63 (2005).

    Article  Google Scholar 

  9. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine. Angew. Math. 133, 97–178 (1907).

    Google Scholar 

  11. Lopreore, C.L. et al. Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys. J. 95, 2624–2635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dirichlet, G.L. Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine. Angew. Math. 40, 209–227 (1850).

    Article  Google Scholar 

  13. Aurenhammer, F. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys 23, 345–405 (1991).

    Article  Google Scholar 

  14. Coggan, J.S. et al. Evidence for ectopic neurotransmission at a neuronal synapse. Science 309, 446–451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  16. Lizana, L., Konkoli, Z., Bauer, B., Jesorka, A. & Orwar, O. Controlling chemistry by geometry in nanoscale systems. Annu. Rev. Phys. Chem. 60, 449–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Neves, S.R. et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666–680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones, W.P. & Menzies, K.R. Analysis of the cell-centred finite volume method for the diffusion equation. J. Comput. Phys. 165, 45–68 (2000).

    Article  Google Scholar 

  19. Germain, R.N. et al. Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol. Rev. 221, 163–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Schwickert, T.A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hauser, A.E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frederick Klauschen or Martin Meier-Schellersheim.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauschen, F., Qi, H., Egen, J. et al. Computational reconstruction of cell and tissue surfaces for modeling and data analysis. Nat Protoc 4, 1006–1012 (2009). https://doi.org/10.1038/nprot.2009.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.94

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing