Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphorus nutrition in Proteaceae and beyond

Abstract

Proteaceae in southwestern Australia have evolved on some of the most phosphorus-impoverished soils in the world. They exhibit a range of traits that allow them to both acquire and utilize phosphorus highly efficiently. This is in stark contrast with many model plants such as Arabidopsis thaliana and crop species, which evolved on soils where nitrogen is the major limiting nutrient. When exposed to low phosphorus availability, these plants typically exhibit phosphorus-starvation responses, whereas Proteaceae do not. This Review explores the traits that account for the very high efficiency of acquisition and use of phosphorus in Proteaceae, and explores which of these traits are promising for improving the phosphorus efficiency of crop plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model summarizing senescence-induced phosphorus remobilization in relation to interplay between RNase and APase activities of vacuolar and cell-wall compartments.
Figure 2: Changes in lipid composition during leaf development in phosphorus-limited H. prostrata and A. thaliana.
Figure 3: Effects of metabolite concentrations and amount of enzyme to illustrate the effect of changes in the concentration of phosphate esters on phosphorus-use efficiency (PPUE).
Figure 4: Time course of cluster-root development for H. prostrata plants grown in nutrient solution supplemented with 1 μM phosphate.
Figure 5: Model highlighting metabolic functions of PEPC during plant acclimation to nutritional Pi deprivation.

Similar content being viewed by others

References

  1. Hopper, S. D. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322, 49–86 (2009).

    Article  CAS  Google Scholar 

  2. Lambers, H. et al. in Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot (ed. Lambers, H. ) 101–127 (UWA Publishing, 2014).

    Google Scholar 

  3. Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

    Article  PubMed  Google Scholar 

  4. Lambers, H., Brundrett, M. C., Raven, J. A. & Hopper, S. D. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334, 11–31 (2010).

    Article  CAS  Google Scholar 

  5. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Pate, J. S., Verboom, W. H. & Galloway, P. D. Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust. J. Bot. 49, 529–560, (2001).

    Article  CAS  Google Scholar 

  7. Lambers, H. et al. in Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants Vol. 48 (eds Plaxton, W. C. & Lambers, H. ) 289–336 (John Wiley & Sons, 2015).

    Book  Google Scholar 

  8. Marschner, P. Marschner's Mineral Nutrition of Higher Plants 3rd edn (Academic, 2012).

    Google Scholar 

  9. Filippelli, G. M. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84, 759–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert, N. The disappearing nutrient. Nature 461, 716–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Van Vuuren, D. P., Bouwman, A. F. & Beusen, A. H. W. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Global Environ. Change 20, 428–439 (2010).

    Article  Google Scholar 

  12. Lambers, H. et al. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. Conserv. Physiol. 1, cot010 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexova, R. & Millar, A. H. Proteomics of phosphate use and deprivation in plants. Proteomics 13, 609–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Lambers, H. & Plaxton, W. C. in Annual Plant Reviews Volume 48: Phosphorus Metabolism in Plants (eds Plaxton, W. C. & Lambers, H. ) 3–22 (Wiley-Blackwell, 2015).

    Google Scholar 

  15. Gibon, Y. Why bring post genomics into the phosphorus-impoverished bush? Plant Cell Environ. 37, 1273–1275 (2014).

    Article  PubMed  Google Scholar 

  16. Han, W., Tang, L., Chen, Y. & Fang, J. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS ONE 8, e83366 (2013).

  17. Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).

    Article  Google Scholar 

  18. Hayes, P., Turner, B. L., Lambers, H. & Laliberté, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396–410 (2014).

    Article  CAS  Google Scholar 

  19. Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Environ. 30, 1557–1565 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Shane, M. W., Stigter, K., Fedosejevs, E. & Plaxton, W. C. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). J. Exp. Bot. 65, 6097–6106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuppusamy, T. et al. Phospholipids are replaced during leaf development, but protein and mature leaf metabolism respond to phosphate in highly phosphorus-efficient harsh hakea. Plant Physiol. 166, 1891–1911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veneklaas, E. J. et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195, 306–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Plaxton, W. C. & Tran, H. T. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tran, H. T., Hurley, B. A. & Plaxton, W. C. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Sci. 179, 14–27 (2010).

    Article  CAS  Google Scholar 

  25. Moellering, E. R. & Benning, C. Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci. 16, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Hopkins, M. et al. Regulation and execution of molecular disassembly and catabolism during senescence. New Phytol. 175, 201–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sulpice, R. et al. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant Cell Environ. 37, 1276–1298 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Dietz, K.-J. & Heilos, L. Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition. Plant Physiol. 93, 1219–1225 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use efficiency. New Phytol. 196, 1098–1108 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).

    Article  PubMed  Google Scholar 

  31. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Gniazdowska, A. & Rychter, A. M. Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil 226, 79–85 (2000).

    Article  CAS  Google Scholar 

  33. Rufty, T. W., Israel, D. W., Volk, R. J., Qiu, J. & Sa, T. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 44, 879–891 (1993).

    Article  CAS  Google Scholar 

  34. Pant, B.-D. et al. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ. 38, 172–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. de Campos, M. C. R., Pearse, S. J., Oliveira, R. S. & Lambers, H. Down-regulation of net phosphorus uptake capacity is inversely related to leaf phosphorus resorption in four species from a phosphorus-impoverished environment. Ann. Bot. 111, 445–454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shane, M. W., Szota, C. & Lambers, H. A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant Cell Environ. 27, 991–1004 (2004).

    Article  CAS  Google Scholar 

  37. Hawkins, H.-J., Hettasch, H., Mesjasz-Przybylowicz, J., Przybylowicz, W. & Cramer, M. D. Phosphorus toxicity in the Proteaceae: a problem in post-agricultural lands. Sci. Hortic. (Amsterdam) 117, 357–365, (2008).

    Article  CAS  Google Scholar 

  38. Parks, S. E., Haigh, A. M. & Cresswell, G. C. Stem tissue phosphorus as an index of the phosphorus status of Banksia ericifolia L. f. Plant Soil 227, 59–65 (2000).

    Article  CAS  Google Scholar 

  39. Shane, M. W. & Lambers, H. Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’. J. Exp. Bot. 57, 413–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Parks, S. E., Haigh, A. M. & Harris, A. M. Responses of six species of Proteaceae, in containers, to controlled-release fertilizer. Commun. Soil Sci. Plant Anal. 38, 2227–2237 (2007).

    Article  CAS  Google Scholar 

  41. Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C. & Sandelius, A. S. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett. 537, 128–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Tjellström, H., Hellgren, L. I., Wieslander, ö . & Sandelius, A. S. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J. 24, 1128–1138 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Gaude, N., Nakamura, Y., Scheible, W.-R., Ohta, H. & Dörmann, P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56, 28–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura, Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog. Lipid Res. 52, 43–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Bieleski, R. L. Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela. Plant Physiol. 43, 1309–1316 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chapin, F. S. & Bieleski, R. L. Mild phosphorus stress in barley and a related low-phosphorus-adapted barleygrass: phosphorus fractions and phosphate absorption in relation to growth. Physiol. Plant. 54, 309–317 (1982).

    Article  CAS  Google Scholar 

  47. Kobayashi, K., Masuda, T., Takamiya, K.-i. & Ohta, H. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J. 47, 238–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Brooks, A. Effects of phosphorus nutrition on ribulose-1,5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. Funct. Plant Biol. 13, 221–237 (1986).

    Article  CAS  Google Scholar 

  49. Jacob, J. & Lawlor, D. W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J. Exp. Bot. 42, 1003–1011 (1991).

    Article  CAS  Google Scholar 

  50. Rao, I. M. & Terry, N. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet: I. Changes in growth, gas exchange, and Calvin cycle Enzymes. Plant Physiol. 90, 814–819 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fredeen, A. L., Rao, I. M. & Terry, N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89, 225–230 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghannoum, O. & Conroy, J. P. Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C3 (Panicum laxum) but not two C4 (P. coloratum and Cenchrus ciliaris) grasses. Funct. Plant Biol. 34, 72–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Crafts-Brandner, S. J. Phosphorus nutrition influence on leaf senescence in soybean. Plant Physiol. 98, 1128–1132 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stitt, M., Lunn, J. & Usadel, B. Arabidopsis and primary photosynthetic metabolism — more than the icing on the cake. Plant J. 61, 1067–1091 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Gagne, J. M. & Clark, S. E. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22, 729–743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hagio, M. et al. Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol. 124, 795–804 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gombos, Z. et al. Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41, 3796–3802 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Domonkos, I. et al. Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol. 134, 1471–1478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morcuende, R. et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Jones, C., Hatier, J.-H., Cao, M., Fraser, K. & Rasmussen, S. in Phosphorus Metabolism in Plants (eds Plaxton, W. C. & Lambers, H. ) 217–236 (Wiley-Blackwell, 2015).

    Google Scholar 

  61. Yan, X., Liao, H., Trull, M. C., Beebe, S. E. & Lynch, J. P. Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiol. 125, 1901–1911 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ishihara, H., Obata, T., Sulpice, R., Fernie, A. R. & Stitt, M. Quantitative determination of the rates of protein synthesis and turnover in Arabidopsis rosettes using dynamic 13CO2 labelling and analysis of isotope enrichment of individual amino acids in free pools and in protein. Plant Physiol. 168, 74–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nelson, C. J., Li, L. & Millar, A. H. Quantitative analysis of protein turnover in plants. Proteomics 14, 579–592 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Stephen, A. M. The composition of Hakea acicularis gum. J. Chem. Soc. 863, 4487–4490 (1956).

    Article  Google Scholar 

  65. Alur, H. H., Desai, R. P., Mitra, A. K. & Johnston, T. P. Inhibition of a model protease — pyroglutamate aminopeptidase by a natural oligosaccharide gum from Hakea gibbosa. Int. J. Pharm. 212, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Eagles, P. F. K., Stephen, A. M. & Churms, S. C. Molecular structures of gum exudates from Hakea species. Phytochemistry 34, 709–713 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Hurry, V., Strand, ö., Furbank, R. & Stitt, M. The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J. 24, 383–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki, Y. et al. Metabolome analysis of photosynthesis and the related primary metabolites in the leaves of transgenic rice plants with increased or decreased Rubisco content. Plant Cell Environ. 35, 1369–1379 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Arrivault, S. et al. Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J. 59, 826–839 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Woodall, G. S., Dodd, I. C. & Stewart, G. R. Contrasting leaf development within the genus Syzygium. J. Exp. Bot. 49, 79–87 (1998).

    CAS  Google Scholar 

  71. Kursar, T. A. & Coley, P. D. Delayed development of the photosynthetic apparatus in tropical rain forest species. Funct. Ecol. 6, 411–422 (1992).

  72. Hughes, N. M., Morley, C. B. & Smith, W. K. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol. 175, 675–685 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kursar, T. A. & Coley, P. D. Delayed greening in tropical leaves: an antiherbivore defense? Biotropica 24, 256–262 (1992).

    Article  Google Scholar 

  74. Close, D. C. & Beadle, C. L. The ecophysiology of foliar anthocyanin. Bot. Rev. 69, 149–161 (2003).

    Article  Google Scholar 

  75. Woodall, G. S. & Stewart, G. R. Do anthocyanins play a role in UV protection of the red juvenile leaves of Syzygium? J. Exp. Bot. 49, 1447–1450 (1998).

    CAS  Google Scholar 

  76. Breeze, E. et al. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873–894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Diaz, C. et al. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol. 47, 74–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Maréchal, E., Block, M. A., Dorne, A. J., Douce, R. & Joyard, J. Lipid synthesis and metabolism in the plastid envelope. Physiol. Plant. 100, 65–77 (1997).

    Article  Google Scholar 

  79. Dean, C. & Leech, R. M. Genome expression during normal leaf development: I. Cellular and chloroplast numbers and DNA, RNA, and protein levels in tissues of different ages within a seven-day-old wheat leaf. Plant Physiol. 69, 904–910 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pick, T. R. et al. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23, 4208–4220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Halsted, M. & Lynch, J. Phosphorus responses of C3 and C4 species. J. Exp. Bot. 47, 497–505 (1996).

    Article  CAS  Google Scholar 

  82. Lambers, H., Martinoia, E. & Renton, M. Plant adaptations to severely phosphorus-impoverished soils. Curr. Opin. Plant Biol. 25, 23–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Lambers, H. & Shane, M. W. in Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations (eds Spiertz, J. H. J., Struik, P. C. & Van Laar, H. H. ) 237–250 (Springer, 2007).

    Book  Google Scholar 

  84. Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J. & Veneklaas, E. J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98, 693–713 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lambers, H., Raven, J. A., Shaver, G. R. & Smith, S. E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103 (2008).

    Article  PubMed  Google Scholar 

  86. Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 178, 351–364 (2015).

    Article  CAS  Google Scholar 

  87. Turner, B. L. & Laliberté, E. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern Australia. Ecosystems 18, 287–309 (2015).

    Article  CAS  Google Scholar 

  88. Borie, F. & Rubio, R. Total and organic phosphorus in Chilean volcanic soils. Gayana Bot. 60, 69–73 (2003).

    Article  Google Scholar 

  89. Grierson, P. F. & Comerford, N. B. Non-destructive measurement of acid phosphatase activity in the rhizosphere using nitrocellulose membranes and image analysis. Plant Soil 218, 49–57 (2000).

    Article  CAS  Google Scholar 

  90. Delgado, M., Zúúiga-Feest, A., Alvear, M. & Borie, F. The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. et J. Forst.). Plant Soil 373, 765–773 (2013).

    Article  CAS  Google Scholar 

  91. Lambers, H., Bishop, J. G., Hopper, S. D., Laliberté, E. & Zúúiga-Feest, A. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann. Bot. 110, 329–348, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delgado, M., Zúúiga-Feest, A., Borie, F., Suriyagoda, L. & Lambers, H. Divergent functioning of Proteaceae species: the South American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct. Ecol. 28, 1356–1366, (2014).

    Article  Google Scholar 

  93. Lambers, H., Clements, J. C. & Nelson, M. N. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot. 100, 263–288, (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Heldt, H. W. Plant Biochemistry, 3rd edn. (Elsevier Academic Press, 2005).

    Google Scholar 

  95. Shane, M. W., Fedosejevs, E. T. & Plaxton, W. C. Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate deficient Hakea prostrata RBr. Plant Physiol. 161, 1634–1644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plaxton, W. C. & Shane, M. W. in Phosphorus Metabolism in Plants (eds W. C. Plaxton & H. Lambers ) 99–124 (Wiley-Blackwell, 2015).

    Google Scholar 

  97. Abrahão, A., Lambers, H., Sawaya, A. C. H. F., Mazzafera, P. & Oliveira, R. S. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176, 345–355 (2014).

    Article  PubMed  Google Scholar 

  98. Oliveira, R. S. et al. Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol. 205, 1183–1194 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Veneklaas, E. J. et al. Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248, 187–197 (2003).

    Article  CAS  Google Scholar 

  100. Ryan, P. R. et al. Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat. Physiol. Plant. 151, 230–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Secco, D., Shou, H., Whelan, J. & Berkowitz, O. RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics 15, 230 (2014).

  102. Gniazdowska, A., Krawczak, A., Mikulska, M. & Rychter, A. M. Low phosphate nutrition alters bean plants' ability to assimilate and translocate nitrate. J. Plant Nutr. 22, 551–563 (1999).

    Article  CAS  Google Scholar 

  103. Lan, P., Li, W. & Schmidt, W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol. Cell. Proteomics 11, 1156–1166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Puga, M. I. et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14947–14952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gamuyao, R. et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488, 535–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Aziz, T., Finnegan, P. M., Lambers, H. & Jost, R. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant Cell Environ. 37, 943–960 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Pariasca-Tanaka, J., Satoh, K., Rose, T., Mauleon, R. & Wissuwa, M. Stress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiency. Rice 2, 167–185 (2009).

    Article  Google Scholar 

  108. Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Plaxton, W. C. in Annual Plant Reviews, Volume 48, Phosphorus Metabolism in Plants Vol. 48 (ed. Storey, K. B. ) 99–124 (John Wiley & Sons, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambers, H., Finnegan, P., Jost, R. et al. Phosphorus nutrition in Proteaceae and beyond. Nature Plants 1, 15109 (2015). https://doi.org/10.1038/nplants.2015.109

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing