Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shape phase transitions and critical-point phenomena in atomic nuclei

Abstract

Atomic nuclei exhibit phase transitions as a function of the number of their constituent protons and neutrons. These phase transitions are not of the usual thermodynamic type, but rather they are quantum phase transitions in the equilibrium shape and structure of the ground and low-lying states. This realization has sparked a new area of research, focusing on the concept of 'critical-point symmetries', which describe the structure of nuclei at phase-transitional points. Both macroscopic (geometric or algebraic) and microscopic (shell-model) aspects of these phase transitions and of changes in structure with proton and neutron number in nuclei are discussed, along with an interpretation in terms of simple Landau theory. Finally, some alternative scenarios and schematic models for different classes of nuclei based on other simple potentials are briefly summarized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symmetry triangle for nuclear structure.
Figure 2: Evolution of the characteristic collective observable, R4/2, and its derivative with respect to either ζ (a,b) or χ (c), for the three legs of the symmetry triangle showing phase-transitional behaviour24,25.
Figure 3: Energy surfaces illustrating the evolution of structure in regions of a, second-order and b, first-order phase transitions.
Figure 4: Characteristic predictions of X(5) and comparisons to relevant data.
Figure 5: Portion of the N–Z chart showing the stable nuclei (grey boxes) and the locus of P 5 (blue contours) where candidates for X(5) should appear83.
Figure 6

Similar content being viewed by others

References

  1. Casten, R. F., Wilhelm, M., Radermacher, E., Zamfir, N. V. & von Brentano, P. The first excited 0+ state in 152Sm. Phys. Rev. C 57, 1553(R)–1557(R) (1998).

    Article  ADS  Google Scholar 

  2. Casten, R. F., Kusnezov, D. & Zamfir, N. V. Phase transitions in finite nuclei and the integer nucleon number problem. Phys. Rev. Lett. 82, 5000–5003 (1999).

    Article  ADS  Google Scholar 

  3. Iachello, F., Zamfir, N. V. & Casten, R. F. Phase coexistence in transitional nuclei and the interacting-boson model. Phys. Rev. Lett. 81, 1191–1194 (1998).

    Article  ADS  Google Scholar 

  4. Iachello, F. Dynamic symmetries at the critical point. Phys. Rev. Lett. 85, 3580–3583 (2000).

    Article  ADS  Google Scholar 

  5. Iachello, F. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  6. Casten, R. F. et al. The intellectual challenges of RIA (RIA Users Community, 2002);http://www.orau.org/ria/history.htm.

  7. The Science of the Rare Isotope Accelerator (RIA) (RIA Users Community, 2006); http://www.orau.org/ria/history.htm.

  8. NSAC-DOE/NSF Long Range Plan for Nuclear Physics (2002); http://www.er.doe.gov/np/nsac/nsac.html.

  9. Scharff-Goldhaber, G. & Weneser, J. J. System of even-even nuclei. Phys. Rev. 98, 212–214 (1955).

    Article  ADS  Google Scholar 

  10. Bohr, A. & Mottelson, B. R. Collective and individual-particle aspects of nuclear structure. Mat. Fys. Medd. Dan. Vid. Selsk. 24, 16 (1953).

    MATH  Google Scholar 

  11. Wilets, L. & Jean, M. Surface oscillations in even-even nuclei. Phys. Rev. 102, 788–796 (1956).

    Article  ADS  MATH  Google Scholar 

  12. Davydov, A. S. & Filippov, G. F. Rotational states in even atomic nuclei. Nucl. Phys. 8, 237–249 (1958).

    Article  Google Scholar 

  13. Zamfir, N. V. & Casten, R. F. Signatures of γ softness or triaxiality in low energy nuclear spectra. Phys. Lett. B 260, 265–270 (1991).

    Article  ADS  Google Scholar 

  14. Casten, R. F. in Interacting Bose-Fermi Systems in Nuclei. (ed. Iachello, F.) 1 (Plenum, New York, 1981).

    Google Scholar 

  15. Iachello, F. & Arima, A. The Interacting Boson Approximation Model (Cambridge University Press, Cambridge, 1987).

    Book  Google Scholar 

  16. Gilmore, R. The classical limit of quantum nonspin systems. J. Math. Phys. 20, 891–893 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  17. Ginocchio, J. N. & Kirson, M. W. Relationship between the Bohr collective hamiltonian and the interacting-boson model. Phys. Rev. Lett. 44, 1744–1747 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dieperink, A. E. L., Scholten, O. & Iachello, F. Classical limit of the interacting-boson model. Phys. Rev. Lett. 44, 1747–1750 (1980).

    Article  ADS  Google Scholar 

  19. van Roosmalen, O. Algebraic Description of Nuclear and Molecular Rotation-Vibration Spectra. Thesis, Univ. Groningen (1982).

    Google Scholar 

  20. Warner, D. D. & Casten, R. F. Revised formulation of the phenomenological interacting boson approximation. Phys. Rev. Lett. 48, 1385–1389 (1982).

    Article  ADS  Google Scholar 

  21. Lipas, P. O., Toivonen, P. & Warner, D. D. IBA consistent-Q formalism extended to the vibrational region. Phys. Lett. B 155, 295–298 (1985).

    Article  ADS  Google Scholar 

  22. Gneuss, G. & Greiner, W. Collective potential energy surfaces and nuclear structure. Nucl. Phys. A 171, 449–479 (1971).

    Article  ADS  Google Scholar 

  23. McCutchan, E. A., Zamfir, N. V. & Casten, R. F. Mapping the interacting boson approximation symmetry triangle: New trajectories of structural evolution of rare-earth nuclei. Phys. Rev. C 69, 064306 (2004).

    Article  ADS  Google Scholar 

  24. Jolie, J., Casten, R. F., von Brentano, P. & Werner, V. Quantum phase transition for γ-soft nuclei. Phys. Rev. Lett. 87, 162501 (2001).

    Article  ADS  Google Scholar 

  25. Werner, V., von Brentano, P., Casten, R. F. & Jolie, J. Singular character of critical points in nuclei. Phys. Lett. B 527, 55–61 (2005).

    Article  ADS  Google Scholar 

  26. Jolie, J. & Casten, R. F. Structural Evolution in nuclei: The rich structures of a simple Hamiltonian. Nucl. Phys. News 15, 20–25 (2005).

    Article  Google Scholar 

  27. Cejnar, P., Heinze, S. & Jolie, J. Ground-state shape phase transitions in nuclei: Thermodynamic analogy and finite-N effects. Phys. Rev. C 68, 034326 (2003).

    Article  ADS  Google Scholar 

  28. Landau, L. Collected Papers of L. D. Landau, (ed. D. Ter Haar) 193–216 (Pergaman, Oxford, 1965).

    Google Scholar 

  29. Caprio, M. & Iachello, F. Phase Structure of the two-fluid proton-neutron system. Phys. Rev. Lett. 93, 242502 (2004).

    Article  ADS  Google Scholar 

  30. Caprio, M. & Iachello, F. Phase structure of a two-fluid bosonic system. Ann. Phys. 318, 454–494 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Jolie, J. et al. Triple point of nuclear deformations. Phys. Rev. Lett. 89, 182502 (2002).

    Article  ADS  Google Scholar 

  32. de Shalit, A. & Goldhaber, M. Mixed configurations in nuclei. Phys. Rev. 92, 1211–1218 (1953).

    Article  ADS  MATH  Google Scholar 

  33. Talmi, I. Effective interactions and coupling schemes in nuclei. Rev. Mod. Phys. 34, 704–722 (1962).

    Article  ADS  Google Scholar 

  34. Federman, P. & Pittel, S. Towards a unified microscopic description of nuclear deformation. Phys. Lett. B 69, 385–388 (1977).

    Article  ADS  Google Scholar 

  35. Casten, R. F., Warner, D. D., Brenner, D. S. & Gill, R. L. Relation between the Z=64 shell closure and the onset of deformation at N=88–90. Phys. Rev. Lett. 47, 1433–1436 (1981).

    Article  ADS  Google Scholar 

  36. Heyde, K., Van Isacker, P., Casten, R. F. & Wood, J. L. A shell-model interpretation of intruder states and the onset of deformation in even-even nuclei. Phys. Lett. B 155, 303–308 (1985).

    Article  ADS  Google Scholar 

  37. Cakirli, R. B. & Casten, R. F. Direct empirical correlation between proton-neutron interaction strengths and the growth of collectivity in nuclei. Phys. Rev. Lett. 96, 132501 (2006).

    Article  ADS  Google Scholar 

  38. Nazarewicz, W. Contemporary Topics in Nuclear Structure Physics (eds Casten, R. F., Frank, A., Moshinsky, M. & Pittel, S.) 467–486 (World Scientific, Singapore, 1988).

    Google Scholar 

  39. Otsuka, T., Suzuki, T., Fujimoto, R., Grawe, H. & Akaishi, Y. Evolution of nuclear shells due to the Tensor Force. Phys. Rev. Lett. 95, 232502 (2005).

    Article  ADS  Google Scholar 

  40. Motobayashi, T. et al. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy Coulomb excitation. Phys. Lett. B 346, 9–14 (1995).

    Article  ADS  Google Scholar 

  41. Ibbotson, R. et al. Quadrupole Collectivity in 32,34,36,38Si and the N = 20 Shell Closure. Phys. Rev. Lett. 80, 2081–2084 (1998).

    Article  ADS  Google Scholar 

  42. Prittychenko, B. V. et al. First observation of an excited state in the neutron-rich nucleus 31Na. Phys. Rev. C 63, 011305 (2001).

    Article  ADS  Google Scholar 

  43. Ozawa, A. et al. New magic number, N = 16, near the neutron drip line. Phys. Rev. Lett. 84, 5493–5495 (2000).

    Article  ADS  Google Scholar 

  44. Janssens, R. V. F. et al. Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca. Phys. Lett. B 546, 55–62 (2002).

    Article  ADS  Google Scholar 

  45. Dinca, D.-C. et al. Reduced transition probabilities to the first 2+ state in 52,54,56Ti and development of shell closures at N=32,34. Phys. Rev. C 71, 041302 (2005).

    Article  ADS  Google Scholar 

  46. Janssens, R. V. F. Nuclear physics: Elusive magic numbers. Nature 435, 897–898 (2005).

    Article  ADS  Google Scholar 

  47. Caprio, M. A. Effects of β-γ coupling in transitional nuclei and the validity of the approximate separation of variables. Phys. Rev. C 72, 054323 (2005).

    Article  ADS  Google Scholar 

  48. Casten, R. F. & Zamfir, N. V. Empirical realization of a critical point description in atomic nuclei. Phys. Rev. Lett. 87, 052503 (2001).

    Article  ADS  Google Scholar 

  49. Krücken, R. et al. B(E2) Values in 150Nd and the critical point symmetry X(5). Phys. Rev. Lett. 88, 232501 (2002).

    Article  ADS  Google Scholar 

  50. Tonev, D. et al. Transition probabilities in 154Gd: Evidence for X(5) critical point symmetry. Phys. Rev. C 69, 034334 (2004).

    Article  ADS  Google Scholar 

  51. Möller, O. et al. Electromagnetic transition strengths in 156Dy. Phys. Rev. C 74, 024313 (2006).

    Article  ADS  Google Scholar 

  52. Casten, R. F., Brenner, D. S. & Haustein, P. E. Valence p-n interactions and the development of collectivity in heavy nuclei. Phys. Rev. Lett. 58, 658–661 (1987).

    Article  ADS  Google Scholar 

  53. McCutchan, E. A. et al. Low spin states in 162Yb and the X(5) critical point symmetry. Phys. Rev. C 69, 024308 (2004).

    Article  ADS  Google Scholar 

  54. McCutchan, E. A. et al. γ-ray spectroscopy of 166Hf: X(5) in N > 90? Phys. Rev. C 71, 024309 (2005).

    Article  ADS  Google Scholar 

  55. Dewald, A. et al. Test of the critical point symmetry X(5) in the mass A = 180 region. J. Phys. G: Nucl. Part. Phys. 31, S1427–S1432 (2005).

    Article  Google Scholar 

  56. Clark, R. M. et al. Searching for X(5) behavior in nuclei. Phys. Rev. C 68, 037301 (2003).

    Article  ADS  Google Scholar 

  57. Casten, R. F. & Zamfir, N. V. Evidence for a possible E(5) symmetry in 134Ba. Phys. Rev. Lett. 85, 3584–3586 (2000).

    Article  ADS  Google Scholar 

  58. Frank, A., Alonso, C. E. & Arias, J. M. Search for E(5) symmetry in nuclei: The Ru isotopes. Phys. Rev. C 65, 014301 (2002).

    Article  ADS  Google Scholar 

  59. Zamfir, N. V. et al. 102Pd: An E(5) nucleus? Phys. Rev. C 65, 044325 (2002).

    Article  ADS  Google Scholar 

  60. Clark, R. M. et al. Searching for E(5) behavior in nuclei. Phys. Rev. C 69, 064322 (2004).

    Article  ADS  Google Scholar 

  61. Heinze, S., Cejnar, P., Jolie, J. & Macek, M. Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. I. Level dynamics. Phys. Rev. C 73, 014306 (2006).

    Article  ADS  Google Scholar 

  62. Macek, M., Cejnar, P., Heinze, S. & Jolie, J. Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. II. Classical trajectories. Phys. Rev. C 73, 014307 (2006).

    Article  ADS  Google Scholar 

  63. Ginocchio, J. N. Critical point symmetry in a fermion monopole and quadrupole pairing model. Phys. Rev. C 71, 064325 (2005).

    Article  ADS  Google Scholar 

  64. Leviatan, A. & Ginocchio, J. N. Critical-Point Symmetry in a Finite System. Phys. Rev. Lett. 90, 212501 (2003).

    Article  ADS  Google Scholar 

  65. Caprio, M. A. Consequences of wall stiffness for a β-soft potential. Phys. Rev. C 69, 044307 (2004).

    Article  ADS  Google Scholar 

  66. Caprio, M. A. Finite well solution for the E(5) Hamiltonian. Phys. Rev. C 65, 031304 (2002).

    Article  ADS  Google Scholar 

  67. Iachello, F. Phase Transitions in angle variables. Phys. Rev. Lett. 91, 132502 (2003).

    Article  ADS  Google Scholar 

  68. Fortunato, L. Phys. Rev. C 70, 011302 (2004).

    Article  ADS  Google Scholar 

  69. Bonatsos, D., Lenis, D., Petrellis, D., Terziev, P. A. & Yigitoglu, I. X(3): an exactly separable γ-rigid version of the X(5) critical point symmetry. Phys. Lett. B 632, 238–242 (2006).

    Article  ADS  MATH  Google Scholar 

  70. Bonatsos, D., Lenis, D., Petrellis, D., Terziev, P. A. & Yigitoglu, I. γ-rigid solution of the Bohr Hamiltonian for γ=30° compared to the E(5) critical point symmetry. Phys. Lett. B 621, 102–108 (2005).

    Article  ADS  Google Scholar 

  71. Bonatsos, D., Lenis, D., Petrellis, D. & Terziev, P. A. Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition. Phys. Lett. B 588, 172–179 (2004).

    Article  ADS  Google Scholar 

  72. Bonatsos, D., Lenis, D., Minkov, N., Raychev, P. P. & Terziev, P. A. Sequence of potentials lying between the U(5) and X(5) symmetries. Phys. Rev. C 69, 014302 (2004).

    Article  ADS  Google Scholar 

  73. Bonatsos, D., Lenis, D., Minkov, N. Raychev, P. P. & Terziev, P. A. Sequence of potentials interpolating between the U(5) and E(5) symmetries. Phys. Rev. C 69, 044316 (2004).

    Article  ADS  Google Scholar 

  74. Pietralla, N. & Gorbachenko, O. M. Evolution of the “β excitation” in axially symmetric transitional nuclei. Phys. Rev. C 70, 011304 (2004).

    Article  ADS  Google Scholar 

  75. Chou, W.-T., Cata-Danil, Gh., Zamfir, N. V., Casten, R. F. & Pietralla, N. Collective 0+ excitations and their global properties. Phys. Rev. C 64, 057301 (2001).

    Article  ADS  Google Scholar 

  76. Bonatsos, D., Lewis, D., Pietralla, N. & Terziev, P. A. γ-soft analog of the confined β-soft rotor model. Phys. Rev. C 74, 044306 (2006).

    Article  ADS  Google Scholar 

  77. Heinze, S., Cejnar, P., Jolie, J. & Macak, M. Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. I. Level dynamics. Phys. Rev. C 73, 014306 (2006).

    Article  ADS  Google Scholar 

  78. Iachello, F. Dynamic supersymmetries of differential equations with applications to nuclear spectroscopy. Phys. Rev. Lett. 95, 052503 (2005).

    Article  ADS  Google Scholar 

  79. Alonso, C. E., Arias, J. M., Fortunato, L. & Vitturi, A. Phase transitions in the interacting boson fermion model: The γ-unstable case. Phys. Rev. C 72, 061302 (2005).

    Article  ADS  Google Scholar 

  80. Fetea, M. et al. First test of the E(5/4) Bose-Fermi symmetry: The structure of 135Ba. Phys. Rev. C 73, 051301 (2006).

    Article  ADS  Google Scholar 

  81. Casten, R. F., Zamfir, N. V. & Krü cken, R. Comment on “Reexamination of the N = 90 transitional nuclei 150Nd and 152Sm”. Phys. Lett. Rev. C 68, 059801 (2003).

    Article  ADS  Google Scholar 

  82. Zamfir, N. V. New symmetries in transitional nuclei and radioactive nuclear beam experiments. Indian J. Phys. 76, 95–101 (2002).

    Google Scholar 

  83. Zamfir, N. V. & Casten, R. F. Phase/shape transitions in nuclei. Proc. Romanian Acad. 4, 107–114 (2003).

    Google Scholar 

  84. Vorov, O. K. & Zelevinsky, V. G. Quartic anharmonicity and angular momentum effects in even-even spherical nuclei. Nucl. Phys. 439, 207–218 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

I thank my principal collaborators in much of the work summarized here, in particular, F. Iachello, N. V. Zamfir, M. A. Caprio, E. A. McCutchan, R. Krücken, Jan Jolie, P. von Brentano, V. Werner, N. Pietralla, D. D. Warner, M. Fetea, K. Heyde, D. S. Brenner, and R. B. Cakirli. I am grateful to them, as well as to the following, for numerous discussions of the physics underlying this review: I. Talmi, S. Pittel, A. Frank, R. Bijker, W. Nazarewicz, P. Van Isacker, T. Otsuka, A. Dewald, J. N. Ginocchio, S. Heinze, A. Vitturi and A. Leviatan. I especially thank E. A. McCutchan and P. Farnsworth for extensive and valuable help in preparing this work. Finally, I am grateful to Jan Jolie and the Institut für Kernphysik in Köln, Germany where much of this manuscript was written during a stay in the Spring of 2006. Work supported by US DOE Grant No. DE-FG02-91ER-40609.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casten, R. Shape phase transitions and critical-point phenomena in atomic nuclei. Nature Phys 2, 811–820 (2006). https://doi.org/10.1038/nphys451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing