Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topologically protected refraction of robust kink states in valley photonic crystals

Abstract

Recently discovered1,2 valley photonic crystals (VPCs) mimic many of the unusual properties of two-dimensional (2D) gapped valleytronic materials3,4,5,6,7,8,9. Of the utmost interest to optical communications is their ability to support topologically protected chiral edge (kink) states3,4,5,6,7,8,9 at the internal domain wall between two VPCs with opposite valley-Chern indices. Here we experimentally demonstrate valley-polarized kink states with polarization multiplexing in VPCs, designed from a spin-compatible four-band model. When the valley pseudospin is conserved, we show that the kink states exhibit nearly perfect out-coupling efficiency into directional beams, through the intersection between the internal domain wall and the external edge separating the VPCs from ambient space. The out-coupling behaviour remains topologically protected even when we break the spin-like polarization degree of freedom (DOF), by introducing an effective spin–orbit coupling in one of the VPC domains. This also constitutes the first realization of spin–valley locking for topological valley transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological valley photonic crystal and its bulk band structure.
Figure 2: Symmetry-protected topological valley kink states.
Figure 3: Topologically protected refraction of kink states into an empty waveguide region.
Figure 4: Topologically protected refraction of spin–valley-locked kink states.

Similar content being viewed by others

References

  1. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  ADS  Google Scholar 

  2. Dong, J. et al. Valley Photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    Article  ADS  Google Scholar 

  3. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  ADS  Google Scholar 

  4. Semenoff, G. W., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008).

    Article  ADS  Google Scholar 

  5. Yao, W., Yang, S. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  ADS  Google Scholar 

  6. Zhang, F. et al. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  ADS  Google Scholar 

  7. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  ADS  Google Scholar 

  8. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  ADS  Google Scholar 

  9. Li, J. et al. Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotech. 11, 1060–1065 (2016).

    Article  ADS  Google Scholar 

  10. Zutic, I., Fabian, J. & Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  11. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  12. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  13. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  14. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  15. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  ADS  Google Scholar 

  16. Chen, W. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

    Article  ADS  Google Scholar 

  17. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    Article  ADS  Google Scholar 

  18. Gao, F. et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun. 7, 11619 (2016).

    Article  ADS  Google Scholar 

  19. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

    Article  Google Scholar 

  20. Ma, T. & Shvets, G. Scattering-free optical edge states between heterogeneous photonic topological insulators. Phys. Rev. B 95, 165102 (2017).

    Article  ADS  Google Scholar 

  21. Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

    Article  ADS  Google Scholar 

  22. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    Article  Google Scholar 

  23. Fleury, R., Khanikaev, A. B. & Alu, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  ADS  Google Scholar 

  24. Ezawa, M. Topological Kirchholff law and bulk-edge correspondance for valley Chern and spin-valley Chern numbers. Phys. Rev. B 88, 161406 (2013).

    Article  ADS  Google Scholar 

  25. Ezawa, M. Symmetry protected topological charge in symmetry broken phase: spin-Chern, spin-valley-Chern and mirror-Chern number. Phys. Lett. A 378, 1180–1184 (2014).

    Article  ADS  Google Scholar 

  26. Li, J., Morpurgo, A. F., Buttiker, M. & Martin, I. Marginality of bulk-edge correspondence for single-valley Hamiltonians. Phys. Rev. B 82, 245404 (2010).

    Article  ADS  Google Scholar 

  27. Wellbrock, G. & Xia, T. J. The road to 100G deployment. IEEE Commun. Mag. 48, S14–S18 (2010).

    Article  Google Scholar 

  28. Chen, Z.-Y. et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci. Appl. 6, e16207 (2017).

    Article  Google Scholar 

  29. Wu, X. et al. Direct observation of valley-polarized topological edge states in a designer surface plasmon crystals. Preprint at http://arXiv.org/abs/1703.04570 (2017).

  30. Noh, J. et al. Observation of photonic topological valley-Hall edge states. Preprint at http://arXiv.org/abs/1706.00059 (2017).

Download references

Acknowledgements

This work was sponsored by Nanyang Technological University for NAP Start-up Grants, Singapore Ministry of Education under Grants No. MOE2015-T2-1-070, MOE2015-T2-2-008, MOE2016-T3-1-006 and Tier 1 RG174/16 (S). K.L., Y.Y. and G.S. acknowledge the support of the Air Force Office of Scientific Research under a Grant No. FA9550-15-1-0075, and the Army Research Office under a Grant No. W911NF-16-1-0319.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to this work. F.G., H.X. and Z.Y. fabricated structures and performed measurements. F.G., Z.Y., Y.Y. and X.L. performed simulation. F.G. and Z.Y. provided major theoretical analysis. K.L. designed part of the unidirectional excitation experiment. Y.C., G.S., and B.Z. supervised the project.

Corresponding authors

Correspondence to Zhaoju Yang, Gennady Shvets or Baile Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Xue, H., Yang, Z. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018). https://doi.org/10.1038/nphys4304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4304

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing