Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weyl points and Fermi arcs in a chiral phononic crystal

Abstract

Topological semimetals are materials whose band structure contains touching points that are topologically nontrivial and can host quasiparticle excitations that behave as Dirac or Weyl fermions1,2,3,4,5,6,7. These so-called Weyl points not only exist in electronic systems, but can also be found in artificial periodic structures with classical waves, such as electromagnetic waves in photonic crystals8,9,10,11 and acoustic waves in phononic crystals12,13. Due to the lack of spin and a difficulty in breaking time-reversal symmetry for sound, however, topological acoustic materials cannot be achieved in the same way as electronic or optical systems. And despite many theoretical predictions12,13, experimentally realizing Weyl points in phononic crystals remains challenging. Here, we experimentally realize Weyl points in a chiral phononic crystal system, and demonstrate surface states associated with the Weyl points that are topological in nature, and can host modes that propagate only in one direction. As with their photonic counterparts, chiral phononic crystals bring topological physics to the macroscopic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the unit cell of the phononic crystal.
Figure 2: Bulk bands of the two lowest modes.
Figure 3: Surface waves and the dispersions.
Figure 4: Experimental one-way propagation of surface states in the presence of a defect.

Similar content being viewed by others

References

  1. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  2. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  3. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  4. Xu, S. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article  Google Scholar 

  5. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  6. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

    Article  Google Scholar 

  7. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  8. Lu, L., Fu, L., Joannopoulos, J. D. & Soljacic, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article  ADS  Google Scholar 

  9. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, W. J., Xiao, M. & Chan, C. T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states. Nat. Commun. 7, 13038 (2016).

    Article  ADS  Google Scholar 

  11. Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

    Article  Google Scholar 

  12. Xiao, M. et al. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  Google Scholar 

  13. Yang, Z. & Zhang, B. Acoustic type-II Weyl nodes from stacking dimerized chains. Phys. Rev. Lett. 117, 224301 (2016).

    Article  ADS  Google Scholar 

  14. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  15. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  16. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  17. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  18. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  19. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 . Nat. Phys. 12, 1105–1110 (2016).

    Article  Google Scholar 

  20. Xu, Y., Zhang, F. & Zhang, C. Structured Weyl points in spin-orbit coupled Fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  21. Xu, Y. & Duan, L. M. Type-II Weyl points in three-dimensional cold-atom optical lattices. Phys. Rev. A 94, 053619 (2016).

    Article  ADS  Google Scholar 

  22. Wang, L., Jian, S.-K. & Yao, H. Topological photonic crystal with equifrequency Weyl points. Phys. Rev. A 93, 061801(R) (2016).

    Article  ADS  Google Scholar 

  23. Bravo-Abad, J. et al. Weyl points in photonic-crystal superlattices. 2D Mater. 2, 034013 (2015).

    Article  Google Scholar 

  24. Gao, W. et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 7, 12435 (2016).

    Article  ADS  Google Scholar 

  25. Xiao, M., Lin, Q. & Fan, S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016).

    Article  ADS  Google Scholar 

  26. Shastri, K., Yang, Z. & Zhang, B. Realizing type-II Weyl points in an optical lattice. Phys. Rev. B 95, 014306 (2017).

    Article  ADS  Google Scholar 

  27. Dubcek, T. et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

    Article  ADS  Google Scholar 

  28. Hou, J.-M. & Chen, W. Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points. Sci. Rep. 6, 33512 (2016).

    Article  ADS  Google Scholar 

  29. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  Google Scholar 

  30. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2016).

    Article  Google Scholar 

  31. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  32. Fleury, R., Khanikaev, A. B. & Alu, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  ADS  Google Scholar 

  33. Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (Grant No. 2015CB755500), the National Natural Science Foundation of China (Grant Nos 61271139, 11572318, 11604102, and 11374233), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594) and the National Postdoctoral Program for Innovative Talents (BX201600054).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. initiated and supervised the project. F.L. designed and performed the experiments. X.Q.H. and J.Y.L. carried out the numerical simulations. Z.L., F.L., X.Q.H. and J.Y.L. wrote the manuscript. All authors contributed to the analyses and discussions of the manuscript.

Corresponding author

Correspondence to Zhengyou Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Huang, X., Lu, J. et al. Weyl points and Fermi arcs in a chiral phononic crystal. Nature Phys 14, 30–34 (2018). https://doi.org/10.1038/nphys4275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing