Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interlayer electron–phonon coupling in WSe2/hBN heterostructures

Abstract

Engineering layer–layer interactions provides a powerful way to realize novel and designable quantum phenomena in van der Waals heterostructures1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Interlayer electron–electron interactions, for example, have enabled fascinating physics that is difficult to achieve in a single material, such as the Hofstadter’s butterfly in graphene/boron nitride (hBN) heterostructures5,6,7,8,9,10. In addition to electron–electron interactions, interlayer electron–phonon interactions allow for further control of the physical properties of van der Waals heterostructures. Here we report an interlayer electron–phonon interaction in WSe2/hBN heterostructures, where optically silent hBN phonons emerge in Raman spectra with strong intensities through resonant coupling to WSe2 electronic transitions. Excitation spectroscopy reveals the double-resonance nature of such enhancement, and identifies the two resonant states to be the A exciton transition of monolayer WSe2 and a new hybrid state present only in WSe2/hBN heterostructures. The observation of an interlayer electron–phonon interaction could open up new ways to engineer electrons and phonons for device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WSe2/hBN heterostructures.
Figure 2: Emission spectra of a WSe2/hBN heterostructure at 77 K.
Figure 3: Resonant Raman process in WSe2/hBN heterostructures.
Figure 4: Varying the interlayer electron–phonon coupling with electrostatic doping.

Similar content being viewed by others

References

  1. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  2. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  Google Scholar 

  3. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    Article  ADS  Google Scholar 

  4. van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Article  ADS  Google Scholar 

  5. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  Google Scholar 

  6. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  Google Scholar 

  7. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  8. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  9. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  ADS  Google Scholar 

  10. Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Phys. 10, 743–747 (2014).

    Article  Google Scholar 

  11. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  12. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  13. Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    Article  ADS  Google Scholar 

  14. Yu, H. Y., Wang, Y., Tong, Q. J., Xu, X. D. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Article  ADS  Google Scholar 

  15. Klimchitskaya, G. L., Mohideen, U. & Mostepanenko, V. M. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827–1885 (2009).

    Article  ADS  Google Scholar 

  16. Woods, L. M. et al. A materials perspective on Casimir and van der Waals interactions. Preprint at http://arxiv.org/abs/1509.03338 (2015).

  17. Price, P. J. Two-dimensional electron transport in semiconductor layers. I. Phonon scattering. Ann. Phys. 133, 217–239 (1981).

    Article  ADS  Google Scholar 

  18. Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002).

    Article  ADS  Google Scholar 

  19. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, 1955).

    MATH  Google Scholar 

  20. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  21. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  ADS  Google Scholar 

  22. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

    Article  ADS  Google Scholar 

  23. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nat. Nanotech. 3, 206–209 (2008).

    Article  Google Scholar 

  24. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    Article  ADS  Google Scholar 

  25. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nat. Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  26. Geick, R., Perry, C. H. & Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 146, 543–547 (1966).

    Article  ADS  Google Scholar 

  27. Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 095503 (2007).

    Article  ADS  Google Scholar 

  28. Sahin, H. et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 . Phys. Rev. B 87, 165409 (2013).

    Article  ADS  Google Scholar 

  29. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  ADS  Google Scholar 

  30. Cardona, M. Light Scattering in Solids I Vol. 8, 85–92 (Springer, 1983).

    Book  Google Scholar 

  31. Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).

    Article  ADS  Google Scholar 

  32. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Kahn for technical suggestions on heterostructure preparation and J. Yuk for fruitful discussions on sample characterization. This work was primarily supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02-05-CH11231 (van der Waals heterostructures program, KCWF16), and was supported in part by previous breakthroughs obtained through the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH11231. F.W. also acknowledges support from a David and Lucile Packard fellowship. S.T. acknowledges support from NSF CAREER award DMR 1552220. Growth of hexagonal boron nitride crystals was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas ‘Science of Atomic Layers’ from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

F.W., J.K. and C.J. conceived the research. C.J. and J.K. carried out optical measurements. C.J. and F.W. performed theoretical analysis. J.K., C.J., J.S., Z.S. and M.K. fabricated gate-tunable van der Waals heterostructures. B.C., X.F. and S.T. grew WSe2 crystals. K.W. and T.T. grew hBN crystals. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Kim, J., Suh, J. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nature Phys 13, 127–131 (2017). https://doi.org/10.1038/nphys3928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing