Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral magnetic effect in ZrTe5

Abstract

The chiral magnetic effect is the generation of an electric current induced by chirality imbalance in the presence of a magnetic field. It is a macroscopic manifestation of the quantum anomaly1,2 in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum)—a remarkable phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery3,4,5,6 of Dirac semimetals with chiral quasiparticles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magnetotransport in zirconium pentatelluride, ZrTe5, that provides strong evidence for the chiral magnetic effect. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a three-dimensional Dirac semimetal. We observe a large negative magnetoresistance when the magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of a Dirac semimetal into a Weyl semimetal induced by parallel electric and magnetic fields that represent a topologically non-trivial gauge field background. We expect that the chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetoresistance in ZrTe5.
Figure 2: Magnetoresistance in magnetic fields parallel to the current (B || a) in ZrTe5.
Figure 3: Electronic structure of ZrTe5.

Similar content being viewed by others

References

  1. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  ADS  Google Scholar 

  2. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0γγ in the σ-model. Il Nuovo Cimento A 60, 47–61 (1969).

    Article  ADS  Google Scholar 

  3. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi(A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  4. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  5. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  6. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  7. Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  8. Fukushima, K., Kharzeev, D. & Warringa, H. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    ADS  Google Scholar 

  9. Kharzeev, D. E. The chiral magnetic effect and anomaly-induced transport. Prog. Part. Nucl. Phys. 75, 133–151 (2014).

    Article  ADS  Google Scholar 

  10. Kharzeev, D. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006).

    Article  ADS  Google Scholar 

  11. Abelev, B. et al. Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009).

    Article  ADS  Google Scholar 

  12. Abelev, B. et al. Charge separation relative to the reaction plane in Pb–Pb collisions at sNN = 2.76 TeV. Phys. Rev. Lett. 110, 012301 (2013).

    Article  ADS  Google Scholar 

  13. Vilenkin, A. & Leahy, D. Parity nonconservation and the origin of cosmic magnetic fields. Astrophys. J. 254, 77–81 (1982).

    Article  ADS  Google Scholar 

  14. Fröhlich, J. & Pedrini, B. New applications of the chiral anomaly. Preprint at http://arxiv.org/abs/hep-th/0002195 (2000).

  15. Joyce, M. & Shaposhnikov, M. Primordial magnetic fields, right electrons, and the Abelian anomaly. Phys. Rev. Lett. 79, 1193–1196 (1997).

    Article  ADS  Google Scholar 

  16. Giovannini, M. & Shaposhnikov, M. E. Primordial hypermagnetic fields and the triangle anomaly. Phys. Rev. D 57, 2186–2206 (1998).

    Article  ADS  Google Scholar 

  17. Vachaspati, T. Estimate of the primordial magnetic field helicity. Phys. Rev. Lett. 87, 251302 (2001).

    Article  ADS  Google Scholar 

  18. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  19. Burkov, A. A. Chiral anomaly and diffusive magnetotransport in Weyl metals. Phys. Rev. Lett. 113, 247203 (2014).

    Article  ADS  Google Scholar 

  20. Okada, S., Sambongi, T. & Ido, M. Giant resistivity anomaly in ZrTe5 . J. Phys. Soc. Jpn 49, 839–840 (1980).

    Article  ADS  Google Scholar 

  21. Tritt, T. et al. Large enhancement of the resistive anomaly in the pentatelluride materials HfTe5 and ZrTe5 with applied magnetic field. Phys. Rev. B 60, 7816–7819 (1999).

    Article  ADS  Google Scholar 

  22. Whangbo, M., DiSalvo, F. & Fleming, R. Electronic structure of ZrTe5 . Phys. Rev. B 26, 687–689 (1982).

    Article  ADS  Google Scholar 

  23. McIlroy, D. N. et al. Observation of a semimetal-semiconductor phase transition in the intermetallic ZrTe5 . J. Phys. Condens. Matter 16, L359–L365 (2004).

    Article  Google Scholar 

  24. Kamm, G., Gillespie, D., Ehrlich, A., Wieting, T. & Levy, F. Fermi surface, effective masses, and Dingle temperatures of ZrTe5 as derived from the Shubnikov-de Haas effect. Phys. Rev. B 31, 7617–7623 (1985).

    Article  ADS  Google Scholar 

  25. Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5 . Phys. Rev. X 4, 011002 (2014).

    Google Scholar 

  26. He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    Article  ADS  Google Scholar 

  27. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  29. Yang, X., Li, Y., Wang, Z., Zhen, Y. & Xu, Z.-A. Observation of negative magnetoresistance and nontrivial π Berrys phase in 3D Weyl semi-metal NbAs. Preprint at http://arxiv.org/abs/1506.02283 (2015).

  30. Wang, Z. et al. Helicity protected ultrahigh mobility Weyl fermions in NbP. Preprint at http://arxiv.org/abs/1506.00924 (2015).

  31. Shekhar, C. et al. Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP. Preprint at http://arxiv.org/abs/1506.06577 (2015).

  32. Li, C.-Z. et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nature Commun. 6, 10137 (2015).

    Article  ADS  Google Scholar 

  33. Kim, H.-J. et al. Dirac versus Weyl fermions in topological insulators: Adler–Bell–Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111, 246603 (2013).

    Article  ADS  Google Scholar 

  34. Pippard, A. Magnetoresistance in Metals. Cambridge Studies in Low Temperature Physics (Cambridge Univ. Press, 1989).

    Google Scholar 

  35. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  36. Pletikosić, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2 . Phys. Rev. Lett. 113, 216601 (2014).

    Article  ADS  Google Scholar 

  37. Chen, R. Y. et al. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac fermions in ZrTe5 . Phys. Rev. Lett. 115, 176404 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Misewich, P. Johnson, A. Abanov and G. Monteiro for discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, contracts No. DE-AC02-98CH10886, No. DE-FG-88ER40388, Office of Nuclear Physics, contract No. DE-FG-88ER41723 and ARO MURI Program, grant W911NF-12-1-0461. ALS is operated by the US DOE under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

D.E.K. designed and, with Q.L. and T.V., directed the study, analysed results, and wrote the manuscript. Q.L. and C.Z. performed the transport measurements and analysed results. R.D.Z., J.A.S. and G.D.G. grew the crystals and performed X-ray diffraction experiments, Y.H. performed the SEM/TEM measurements and provided analysis. I.P., A.V.F. and T.V. performed the ARPES measurements and analysed results. All authors made contributions to writing the manuscript.

Corresponding authors

Correspondence to Qiang Li, Dmitri E. Kharzeev or T. Valla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Kharzeev, D., Zhang, C. et al. Chiral magnetic effect in ZrTe5. Nature Phys 12, 550–554 (2016). https://doi.org/10.1038/nphys3648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3648

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing