Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice

Abstract

Topological charge pumping enables the transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transported charge is quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. Here, we report on the realization of such a pump with ultracold bosonic atoms forming a Mott insulator in a dynamically controlled optical superlattice. By taking in situ images of the cloud, we observe a quantized deflection per pump cycle. We reveal the pump’s genuine quantum nature by showing that, in contrast to ground-state particles, a counterintuitive reversed deflection occurs for particles in the first excited band. Furthermore, we directly demonstrate that the system undergoes a controlled topological transition in higher bands when tuning the superlattice parameters. These results open a route to the implementation of more complex pumping schemes, including spin degrees of freedom and higher dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological charge pumping in an optical superlattice.
Figure 2: Centre-of-mass (COM) position of the atom cloud as a function of the pumping parameter ϕ for the lowest band with Vs = 10.0(3)Er,s and Vl = 20(1)Er,l.
Figure 3: Transition from a quantum sliding lattice to the Wannier tunnelling limit for the lowest band.
Figure 4: Cloud displacement and site occupations for the first excited band with Vs = 10.0(3)Er,s and Vl = 20(1)Er,l.
Figure 5: Topological transition in the first excited band.

Similar content being viewed by others

References

  1. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. Niu, Q. & Thouless, D. J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  4. Thouless, D., Kohmoto, M., Nightingale, M. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  5. Niu, Q. Towards a quantum pump of electric charges. Phys. Rev. Lett. 64, 1812–1815 (1990).

    Article  ADS  Google Scholar 

  6. Pekola, J. P. et al. Single-electron current sources: Toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013).

    Article  ADS  Google Scholar 

  7. Splettstoesser, J., Governale, M., König, J. & Fazio, R. Adiabatic pumping through interacting quantum dots. Phys. Rev. Lett. 95, 246803 (2005).

    Article  ADS  Google Scholar 

  8. Marra, P., Citro, R. & Ortix, C. Fractional quantization of the topological charge pumping in a one-dimensional superlattice. Phys. Rev. B 91, 125411 (2015).

    Article  ADS  Google Scholar 

  9. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on charging effects. Europhys. Lett. 17, 249 (1992).

    Article  ADS  Google Scholar 

  10. Talyanskii, V. I. et al. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys. Rev. B 56, 15180–15184 (1997).

    Article  ADS  Google Scholar 

  11. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  ADS  Google Scholar 

  12. Switkes, M., Marcus, C. M., Campman, K. & Gossard, A. C. An adiabatic quantum electron pump. Science 283, 1905–1908 (1999).

    Article  ADS  Google Scholar 

  13. Brouwer, P. W. Scattering approach to parametric pumping. Phys. Rev. B 58, R10135 (1998).

    Article  ADS  Google Scholar 

  14. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  Google Scholar 

  15. Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y. E. & Silberberg, Y. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).

    Article  ADS  Google Scholar 

  16. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).

    Article  ADS  Google Scholar 

  17. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  Google Scholar 

  18. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  19. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  20. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  22. Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    Article  ADS  Google Scholar 

  23. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

    Article  ADS  Google Scholar 

  24. Romero-Isart, O. & García-Ripoll, J. J. Quantum ratchets for quantum communication with optical superlattices. Phys. Rev. A 76, 052304 (2007).

    Article  ADS  Google Scholar 

  25. Qian, Y., Gong, M. & Zhang, C. Quantum transport of bosonic cold atoms in double-well optical lattices. Phys. Rev. A 84, 013608 (2011).

    Article  ADS  Google Scholar 

  26. Wang, L., Troyer, M. & Dai, X. Topological charge pumping in a one-dimensional optical lattice. Phys. Rev. Lett. 111, 026802 (2013).

    Article  ADS  Google Scholar 

  27. Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

    Article  ADS  Google Scholar 

  28. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  29. Wei, R. & Mueller, E. J. Anomalous charge pumping in a one-dimensional optical superlattice. Phys. Rev. A 92, 013609 (2015).

    Article  ADS  Google Scholar 

  30. Ringel, Z. & Kraus, Y. E. Determining topological order from a local ground-state correlation function. Phys. Rev. B 83, 245115 (2011).

    Article  ADS  Google Scholar 

  31. Wang, L., Soluyanov, A. A. & Troyer, M. Proposal for direct measurement of topological invariants in optical lattices. Phys. Rev. Lett. 110, 166802 (2013).

    Article  ADS  Google Scholar 

  32. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article  ADS  Google Scholar 

  33. Harper, P. G. The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proc. Phys. Soc. A 68, 879 (1955).

    Article  ADS  Google Scholar 

  34. Roux, G. et al. Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases. Phys. Rev. A 78, 023628 (2008).

    Article  ADS  Google Scholar 

  35. Kraus, Y. E. & Zilberberg, O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).

    Article  ADS  Google Scholar 

  36. Kraus, Y. E., Ringel, Z. & Zilberberg, O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).

    Article  ADS  Google Scholar 

  37. Azbel, M. Y. Energy spectrum of a conduction electron in a magnetic field. Zh. Eksp. Teor. Fiz. 46, 929–946 (1964) [Sov. Phys. JETP 19, 634–645 (1964)].

    Google Scholar 

  38. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article  ADS  Google Scholar 

  39. Hatsugai, Y. & Kohmoto, M. Energy spectrum and the quantum Hall effect on the square lattice with next-nearest-neighbor hopping. Phys. Rev. B 42, 8282–8294 (1990).

    Article  ADS  Google Scholar 

  40. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    Article  ADS  Google Scholar 

  41. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  42. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  43. Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  44. Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).

    Article  ADS  Google Scholar 

  45. Shindou, R. Quantum spin pump in s = 1/2 antiferromagnetic chains-holonomy of phase operators in sine-Gordon theory. J. Phys. Soc. Jpn 74, 1214–1223 (2005).

    Article  ADS  Google Scholar 

  46. Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  47. Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).

    Article  ADS  Google Scholar 

  48. Zhang, S.-C. & Hu, J. A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001).

    Article  ADS  Google Scholar 

  49. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. http://dx.doi.org/10.1038/nphys3622 (in the press).

Download references

Acknowledgements

We acknowledge insightful discussions with F. Grusdt and S. Kohler. This work was supported by NIM and the EU (UQUAM, SIQS). M.L. was additionally supported by ExQM and O.Z. by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.L., C.S. and M.A. performed the experiment and the data analysis. All authors contributed to the theoretical analysis and to the writing of the paper. I.B. supervised the project.

Corresponding author

Correspondence to M. Lohse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohse, M., Schweizer, C., Zilberberg, O. et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nature Phys 12, 350–354 (2016). https://doi.org/10.1038/nphys3584

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing