Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides

Abstract

Over the past few years iron chalcogenides have been intensively studied as part of the wider family of iron-based superconductors, with many intriguing results reported so far on intercalated and monolayer FeSe. Nevertheless, bulk FeSe itself remains an unusual case when compared with pnictogen-based iron superconductors, and may hold clues to understanding the more exotic derivatives of the FeSe system. The FeSe phase diagram is distinct from the pnictides: the orthorhombic distortion, which is likely to be of a ‘spin-nematic’ nature in numerous pnictides, is not accompanied by magnetic order in FeSe, and the superconducting transition temperature Tc rises significantly with pressure before decreasing. Here we show that the magnetic interactions in FeSe, as opposed to most pnictides, demonstrate an unusual and unanticipated frustration, which suppresses magnetic (but not nematic) order, triggers ferro-orbital order in the nematic phase and can naturally explain the non-monotonic pressure dependence of the superconducting critical temperature Tc(P).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collinear magnetic structures used for fitting the J1J2J3K model.
Figure 2: Classical mean-field phase diagrams.
Figure 3: Energies of collinear magnetic configurations.
Figure 4: Energies, density of states at ɛF and orbital order of FeSe at 0 GPa pressure.

Similar content being viewed by others

References

  1. Chubukov, A. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012).

    Article  Google Scholar 

  2. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  3. Wang, F., Zhai, H. & Lee, D.-H. Antiferromagnetic correlation and the pairing mechanism of the cuprates and iron pnictides: A view from the functional renormalization group studies. Europhys. Lett. 85, 37005 (2009).

    Article  ADS  Google Scholar 

  4. Chubukov, A. V., Efremov, D. V. & Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 78, 134512 (2008).

    Article  ADS  Google Scholar 

  5. Stanev, V., Kang, J. & Tesanovic, Z. Spin fluctuation dynamics and multiband superconductivity in iron pnictides. Phys. Rev. B 78, 184509 (2008).

    Article  ADS  Google Scholar 

  6. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  7. Graser, S., Maier, T. A., Hirschfeld, P. J. & Scalapino, D. J. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J. Phys. 11, 025016 (2009).

    Article  ADS  Google Scholar 

  8. Sknepnek, R., Samolyuk, G., Lee, Y.-B. & Schmalian, J. Anisotropy of the pairing gap of FeAs-based superconductors induced by spin fluctuations. Phys. Rev. B 79, 054511 (2009).

    Article  ADS  Google Scholar 

  9. Guterding, D., Jeschke, H. O., Hirschfeld, P. J. & Valentí, R. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe. Phys. Rev. B 91, 041112 (2015).

    Article  ADS  Google Scholar 

  10. Seo, K., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Article  ADS  Google Scholar 

  11. Lv, W., Krüger, F. & Phillips, P. Orbital ordering and unfrustrated (π, 0) magnetism from degenerate double exchange in the iron pnictides. Phys. Rev. B 82, 045125 (2010).

    Article  ADS  Google Scholar 

  12. Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nature Phys. 8, 709–718 (2012).

    Article  ADS  Google Scholar 

  13. Moon, S. J. et al. Dual character of magnetism in EuFe2As2: Optical spectroscopic and density-functional calculation study. Phys. Rev. B 81, 205114 (2010).

    Article  ADS  Google Scholar 

  14. Lee, H., Zhang, Y.-Z., Jeschke, H. O. & Valentí, R. Possible origin of the reduced ordered magnetic moment in iron pnictides: A dynamical mean-field theory study. Phys. Rev. B 81, 220506 (2010).

    Article  ADS  Google Scholar 

  15. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    Article  ADS  Google Scholar 

  16. Chandra, P., Coleman, P. & Larkin, A. I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    Article  ADS  Google Scholar 

  17. Zhao, J. et al. Spin waves and magnetic exchange interactions in CaFe2As2 . Nature Phys. 5, 555–560 (2009).

    Article  ADS  Google Scholar 

  18. Diallo, S. O. et al. Itinerant magnetic excitations in antiferromagnetic CaFe2As2 . Phys. Rev. Lett. 102, 187206 (2009).

    Article  ADS  Google Scholar 

  19. Yaresko, A. N., Liu, G.-Q., Antonov, V. N. & Andersen, O. K. Interplay between magnetic properties and Fermi surface nesting in iron pnictides. Phys. Rev. B 79, 144421 (2009).

    Article  ADS  Google Scholar 

  20. Li, S. et al. First-order magnetic and structural phase transitions in Fe1+ySexTe1+x . Phys. Rev. B 79, 054503 (2009).

    Article  ADS  Google Scholar 

  21. Bao, W. et al. Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys. Rev. Lett. 102, 247001 (2009).

    Article  ADS  Google Scholar 

  22. Ma, F., Ji, W., Hu, J., Lu, Z.-Y. & Xiang, T. First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order. Phys. Rev. Lett. 102, 177003 (2009).

    Article  ADS  Google Scholar 

  23. Ferrer, J. Spin-liquid phase for the frustrated quantum Heisenberg antiferromagnet on a square lattice. Phys. Rev. B 47, 8769–8782 (1993).

    Article  ADS  Google Scholar 

  24. Sindzingre, P., Shannon, N. & Momoi, T. Phase diagram of the spin-1/2 J1–J2–J3 Heisenberg model on the square lattice. J. Phys. Conf. Ser. 200, 022058 (2010).

    Article  Google Scholar 

  25. Wysocki, A. L., Belashchenko, K. D. & Antropov, V. P. Consistent model of magnetism in ferropnictides. Nature Phys. 7, 485–489 (2011).

    Article  ADS  Google Scholar 

  26. Hu, J., Xu, B., Liu, W., Hao, N.-N. & Wang, Y. Unified minimum effective model of magnetic properties of iron-based superconductors. Phys. Rev. B 85, 144403 (2012).

    Article  ADS  Google Scholar 

  27. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    Article  ADS  Google Scholar 

  28. Xu, C., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).

    Article  ADS  Google Scholar 

  29. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nature Mater. 14, 210–214 (2015).

    Article  ADS  Google Scholar 

  30. Böhmer, A. E. et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: A combined thermodynamic and NMR study of nematicity. Phys. Rev. Lett. 114, 027001 (2015).

    Article  ADS  Google Scholar 

  31. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  ADS  Google Scholar 

  32. Landau, D. P. & Binder, K. Phase diagrams and critical behavior of Ising square lattices with nearest-, next-nearest-, and third-nearest-neighbor couplings. Phys. Rev. B 31, 5946–5953 (1985).

    Article  ADS  Google Scholar 

  33. Cao, H.-Y., Chen, S., Xiang, H. & Gong, X.-G. Antiferromagnetic ground state with pair-checkerboard order in FeSe. Phys. Rev. B 91, 020504 (2015).

    Article  ADS  Google Scholar 

  34. Glasbrenner, J. K., Velev, J. P. & Mazin, I. I. First-principles study of the minimal model of magnetic interactions in Fe-based superconductors. Phys. Rev. B 89, 064509 (2014).

    Article  ADS  Google Scholar 

  35. Luo, Q. & Dagotto, E. Magnetic phase diagram of a five-orbital Hubbard model in the real-space Hartree–Fock approximation varying the electronic density. Phys. Rev. B 89, 045115 (2014).

    Article  ADS  Google Scholar 

  36. Parker, D. R. et al. Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count. Phys. Rev. Lett. 104, 057007 (2010).

    Article  ADS  Google Scholar 

  37. Rosenthal, E. P. et al. Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs. Nature Phys. 10, 225–232 (2014).

    Article  ADS  Google Scholar 

  38. Mannella, N. The magnetic moment enigma in Fe-based high temperature superconductors. J. Phys. Condens. Matter 26, 473202 (2014).

    Article  ADS  Google Scholar 

  39. Yin, Z. P., Haule, K. & Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nature Phys. 10, 845–850 (2014).

    Article  ADS  Google Scholar 

  40. Chubukov, A. V., Fernandes, R. M. & Schmalian, J. Origin of nematic order in FeSe. Phys. Rev. B 91, 201105 (2015).

    Article  ADS  Google Scholar 

  41. Wang, F., Kivelson, S. & Lee, D.-H. Is FeSe a nematic quantum paramagnet? Nature Phys. 11,http://dx.doi.org/10.1038/nphys3456 (in the press) (2015).

  42. Rahn, M. C., Ewings, R. A., Sedlmaier, S. J., Clarke, S. J. & Boothroyd, A. T. Strong (π, 0) spin fluctuations in β-FeSe observed by neutron spectroscopy. Phys. Rev. B 91, 180501 (2015).

    Article  ADS  Google Scholar 

  43. Tucker, G. S. et al. Magnetic excitations in underdoped Ba(Fe1−xCox)2As2 with x = 0.047. Phys. Rev. B 86, 024505 (2012).

    Article  ADS  Google Scholar 

  44. Terashima, T. et al. Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements. Phys. Rev. B 90, 144517 (2014).

    Article  ADS  Google Scholar 

  45. Watson, M. D. et al. Dichotomy between the hole and electrons behavior in multiband FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett. 115, 027006 (2015).

    Article  ADS  Google Scholar 

  46. Terashima, T. et al. Pressure-induced antiferromagnetic transition and phase diagram in FeSe. J. Phys. Soc. Jpn 84, 063701 (2015).

    Article  ADS  Google Scholar 

  47. Bendele, M. et al. Pressure induced static magnetic order in superconducting FeSe1−x . Phys. Rev. Lett. 104, 087003 (2010).

    Article  ADS  Google Scholar 

  48. Millis, A. J., Sachdev, S. & Varma, C. M. Inelastic scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

    Article  ADS  Google Scholar 

  49. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    Article  ADS  Google Scholar 

  50. Dewhurst, K. et al. ELK FP-LAPW Code http://elk.sourceforge.net (Halle and Uppsala, 2009).

  51. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Univ. Wien, 2001).

    Google Scholar 

  52. Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).

    Article  ADS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  54. Margadonna, S. et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K). Phys. Rev. B 80, 064506 (2009).

    Article  ADS  Google Scholar 

  55. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, 1985).

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Tomić for running some test calculations at the initial stages of this work and D. Guterding, S. Backes, A. Coldea, A. Chubukov, N. Perkins, S. Kivelson and W. Ku for valuable discussions. I.I.M. is supported by ONR through the NRL Basic Research Program. J.K.G. acknowledges the support of the NRC Program at NRL. H.O.J. and R.V. are supported by DFG-SPP1458. P.J.H. was partially supported by US DOE DE-FG02-05ER46236. R.M.F. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0012336. I.I.M., R.V. and P.J.H. were supported in part by KITP under NSF grant PHY11-25915.

Author information

Authors and Affiliations

Authors

Contributions

I.I.M. and J.K.G. conceived the research; J.K.G., I.I.M. and H.O.J. carried out numerical calculations; R.M.F. carried out analytical calculations for the phenomenological model; all authors participated in the discussion and contributed to writing the paper; I.I.M. and R.V. supervised the whole project.

Corresponding author

Correspondence to J. K. Glasbrenner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasbrenner, J., Mazin, I., Jeschke, H. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nature Phys 11, 953–958 (2015). https://doi.org/10.1038/nphys3434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing