Abstract
Single-atom-resolved detection in optical lattices using quantum-gas microscopes1,2 has enabled a new generation of experiments in the field of quantum simulation. Although such devices have been realized with bosonic species, a fermionic quantum-gas microscope has remained elusive. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope set-up, using electromagnetically-induced-transparency cooling3,4. We detected on average 1,000 fluorescence photons from a single atom within 1.5 s, while keeping it close to the vibrational ground state of the optical lattice. A quantum simulator for fermions with single-particle access will be an excellent test bed to investigate phenomena and properties of strongly correlated fermionic quantum systems, allowing direct measurement of ordered quantum phases5,6,7,8,9 and out-of-equilibrium dynamics10,11, with access to quantities ranging from spin–spin correlation functions to many-particle entanglement12.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).
Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).
Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458–4461 (2000).
Morigi, G. Cooling atomic motion with quantum interference. Phys. Rev. A 67, 033402 (2003).
Snoek, M., Titvinidze, I., Töke, C., Byczuk, K. & Hofstetter, W. Antiferromagnetic order of strongly interacting fermions in a trap: Real-space dynamical mean-field analysis. New J. Phys. 10, 093008 (2008).
Paiva, T., Scalettar, R., Randeria, M. & Trivedi, N. Fermions in 2D optical lattices: Temperature and entropy scales for observing antiferromagnetism and superfluidity. Phys. Rev. Lett. 104, 066406 (2010).
Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).
Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).
Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).
Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).
Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nature Phys. 11, 124–130 (2015).
Pichler, H., Bonnes, L., Daley, A. J., Läuchli, A. M. & Zoller, P. Thermal versus entanglement entropy: A measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Miranda, M., Inoue, R., Okuyama, Y., Nakamoto, A. & Kozuma, M. Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice. Phys. Rev. A 91, 063414 (2015).
Cheuk, L. W. et al. A quantum gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).
Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).
Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).
Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).
Roos, C. F. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547–5550 (2000).
Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).
Kampschulte, T. et al. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity. Phys. Rev. A 89, 033404 (2014).
Fernandes, D. R. et al. Sub-Doppler laser cooling of fermionic 40 K atoms in three-dimensional gray optical molasses. Europhys. Lett. 100, 63001 (2012).
Grier, A. T. et al. Λ-enhanced sub-Doppler cooling of lithium atoms in D1 gray molasses. Phys. Rev. A 87, 063411 (2013).
Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).
Patil, Y. S., Chakram, S., Aycock, L. M. & Vengalattore, M. Nondestructive imaging of an ultracold lattice gas. Phys. Rev. A 90, 033422 (2014).
Lester, B. J., Kaufman, A. M. & Regal, C. A. Raman cooling imaging: Detecting single atoms near their ground state of motion. Phys. Rev. A 90, 011804 (2014).
Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).
Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).
Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).
Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nature Phys. 9, 235–241 (2013).
Kollath, C., Schollwöck, U. & Zwerger, W. Spin-charge separation in cold Fermi gases: A real time analysis. Phys. Rev. Lett. 95, 176401 (2005).
Bernier, J.-S. et al. Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601(R) (2009).
Steinbach, J., Twamley, J. & Knight, P. L. Engineering two-mode interactions in ion traps. Phys. Rev. A 56, 4815–4825 (1997).
Acknowledgements
We thank G. Morigi, A. Daley and A. Buyskikh for fruitful discussions. We acknowledge the contribution of A. Schindewolf, N. Sangouard and J. Hinney during the construction of the experiment. We acknowledge support by EU (ERC-StG FERMILATT, SIQS, Marie Curie Fellowship to E.H.), EPSRC, Scottish Universities Physics Alliance (SUPA).
Author information
Authors and Affiliations
Contributions
E.H., J.H., D.A.C., B.P. and S.K. performed the experiments and data analysis. All authors contributed to the design and set-up of the experiment and to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 166 kb)
Rights and permissions
About this article
Cite this article
Haller, E., Hudson, J., Kelly, A. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nature Phys 11, 738–742 (2015). https://doi.org/10.1038/nphys3403
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3403