Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-atom imaging of fermions in a quantum-gas microscope

Abstract

Single-atom-resolved detection in optical lattices using quantum-gas microscopes1,2 has enabled a new generation of experiments in the field of quantum simulation. Although such devices have been realized with bosonic species, a fermionic quantum-gas microscope has remained elusive. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope set-up, using electromagnetically-induced-transparency cooling3,4. We detected on average 1,000 fluorescence photons from a single atom within 1.5 s, while keeping it close to the vibrational ground state of the optical lattice. A quantum simulator for fermions with single-particle access will be an excellent test bed to investigate phenomena and properties of strongly correlated fermionic quantum systems, allowing direct measurement of ordered quantum phases5,6,7,8,9 and out-of-equilibrium dynamics10,11, with access to quantities ranging from spin–spin correlation functions to many-particle entanglement12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up, laser beam configuration and level scheme.
Figure 2: Single-atom-resolved fluorescence images of fermions.
Figure 3: Demonstration of EIT cooling.
Figure 4: Hopping and atom losses.

Similar content being viewed by others

References

  1. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  Google Scholar 

  2. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  3. Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458–4461 (2000).

    Article  ADS  Google Scholar 

  4. Morigi, G. Cooling atomic motion with quantum interference. Phys. Rev. A 67, 033402 (2003).

    Article  ADS  Google Scholar 

  5. Snoek, M., Titvinidze, I., Töke, C., Byczuk, K. & Hofstetter, W. Antiferromagnetic order of strongly interacting fermions in a trap: Real-space dynamical mean-field analysis. New J. Phys. 10, 093008 (2008).

    Article  ADS  Google Scholar 

  6. Paiva, T., Scalettar, R., Randeria, M. & Trivedi, N. Fermions in 2D optical lattices: Temperature and entropy scales for observing antiferromagnetism and superfluidity. Phys. Rev. Lett. 104, 066406 (2010).

    Article  ADS  Google Scholar 

  7. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  8. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    Article  ADS  Google Scholar 

  9. Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article  ADS  Google Scholar 

  10. Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    Article  ADS  Google Scholar 

  11. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nature Phys. 11, 124–130 (2015).

    Article  ADS  Google Scholar 

  12. Pichler, H., Bonnes, L., Daley, A. J., Läuchli, A. M. & Zoller, P. Thermal versus entanglement entropy: A measurement protocol for fermionic atoms with a quantum gas microscope. New J. Phys. 15, 063003 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  14. Miranda, M., Inoue, R., Okuyama, Y., Nakamoto, A. & Kozuma, M. Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice. Phys. Rev. A 91, 063414 (2015).

    Article  ADS  Google Scholar 

  15. Cheuk, L. W. et al. A quantum gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    Article  ADS  Google Scholar 

  16. Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).

    Article  ADS  Google Scholar 

  17. Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    Article  ADS  Google Scholar 

  18. Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).

    Article  ADS  Google Scholar 

  19. Roos, C. F. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547–5550 (2000).

    Article  ADS  Google Scholar 

  20. Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).

    Article  ADS  Google Scholar 

  21. Kampschulte, T. et al. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity. Phys. Rev. A 89, 033404 (2014).

    Article  ADS  Google Scholar 

  22. Fernandes, D. R. et al. Sub-Doppler laser cooling of fermionic 40 K atoms in three-dimensional gray optical molasses. Europhys. Lett. 100, 63001 (2012).

    Article  ADS  Google Scholar 

  23. Grier, A. T. et al. Λ-enhanced sub-Doppler cooling of lithium atoms in D1 gray molasses. Phys. Rev. A 87, 063411 (2013).

    Article  ADS  Google Scholar 

  24. Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    Article  ADS  Google Scholar 

  25. Patil, Y. S., Chakram, S., Aycock, L. M. & Vengalattore, M. Nondestructive imaging of an ultracold lattice gas. Phys. Rev. A 90, 033422 (2014).

    Article  ADS  Google Scholar 

  26. Lester, B. J., Kaufman, A. M. & Regal, C. A. Raman cooling imaging: Detecting single atoms near their ground state of motion. Phys. Rev. A 90, 011804 (2014).

    Article  ADS  Google Scholar 

  27. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  28. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  29. Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  30. Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nature Phys. 9, 235–241 (2013).

    Article  ADS  Google Scholar 

  31. Kollath, C., Schollwöck, U. & Zwerger, W. Spin-charge separation in cold Fermi gases: A real time analysis. Phys. Rev. Lett. 95, 176401 (2005).

    Article  ADS  Google Scholar 

  32. Bernier, J.-S. et al. Cooling fermionic atoms in optical lattices by shaping the confinement. Phys. Rev. A 79, 061601(R) (2009).

    Article  ADS  Google Scholar 

  33. Steinbach, J., Twamley, J. & Knight, P. L. Engineering two-mode interactions in ion traps. Phys. Rev. A 56, 4815–4825 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Morigi, A. Daley and A. Buyskikh for fruitful discussions. We acknowledge the contribution of A. Schindewolf, N. Sangouard and J. Hinney during the construction of the experiment. We acknowledge support by EU (ERC-StG FERMILATT, SIQS, Marie Curie Fellowship to E.H.), EPSRC, Scottish Universities Physics Alliance (SUPA).

Author information

Authors and Affiliations

Authors

Contributions

E.H., J.H., D.A.C., B.P. and S.K. performed the experiments and data analysis. All authors contributed to the design and set-up of the experiment and to the writing of the manuscript.

Corresponding author

Correspondence to Stefan Kuhr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haller, E., Hudson, J., Kelly, A. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nature Phys 11, 738–742 (2015). https://doi.org/10.1038/nphys3403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3403

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing