Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abrupt transition in the structural formation of interconnected networks

Abstract

Our world is linked by a complex mesh of networks through which information, people and goods flow. These networks are interdependent on each other, and present structural and dynamical features1,2,3,4,5,6 different from those observed in isolated networks7,8,9. Although examples of such dissimilar properties are becoming more abundant—such as in diffusion, robustness and competition—it is not yet clear where these differences are rooted. Here we show that the process of building independent networks into an interconnected network of networks undergoes a structurally sharp transition as the interconnections are formed. Depending on the relative importance of inter- and intra- layer connections, we find that the entire interdependent system can be tuned between two regimes: in one regime, the various layers are structurally decoupled and they act as independent entities; in the other regime, network layers are indistinguishable and the whole system behaves as a single-level network. We analytically show that the transition between the two regimes is discontinuous even for finite-size networks. Thus, any real-world interconnected system is potentially at risk of abrupt changes in its structure, which may manifest new dynamical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interdependent networks.
Figure 2: First-order structural transition in interdependent networks.

Similar content being viewed by others

References

  1. Buldyrev, S. V. et al. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  2. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nature Phys. 8, 40–48 (2012).

    Article  ADS  Google Scholar 

  3. Son, S-W. et al. Percolation theory on interdependent networks based on epidemic spreading. Euro Phys Lett. 97, 16006 (2012).

    Article  ADS  Google Scholar 

  4. Saumell-Mendiola, A., Serrano, M. Á. & Boguñá, M. Epidemic spreading on interconnected networks. Phys. Rev. E 86, 026106 (2012).

    Article  ADS  Google Scholar 

  5. Gómez, S. et al. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013).

    Article  ADS  Google Scholar 

  6. Aguirre, J., Papo, D. & Buldú, J. M. Successful strategies for competing networks. Nature Phys. 9, 230–234 (2013).

    Article  ADS  Google Scholar 

  7. Albert, R. & Barabási, A-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

    Book  Google Scholar 

  9. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).

    Article  ADS  Google Scholar 

  10. Szella, M., Lambiotte, R. & Thurner, S. Multirelational organization of large-scale social networks in an online world. Proc. Natl Acad. Sci. USA 107, 13636–13641 (2010).

    Article  ADS  Google Scholar 

  11. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  12. Albert, R., Jeong, H. & Barabási, A-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  Google Scholar 

  13. Merris, R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197–198, 143–176 (1994).

    Article  MathSciNet  Google Scholar 

  14. Chung, F., Lu, L. & Vu, V. Spectra of random graphs with given expected degrees. Proc. Natl Acad. Sci. USA 100, 6313–6318 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  15. Chung, F. Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, American Mathematical Society, 1997).

    MATH  Google Scholar 

  16. Biyikoglu, T., Leydold, J. & Stadler, P. F. Laplacian Eigenvectors of Graphs: Perron–Frobenius and Faber–Krahn Type Theorems (Lecture Notes in Mathematics, Springer, 2007).

    Book  Google Scholar 

  17. Fielder, M. Algebraic connectivity of Graphs. Czech. Math. J. 23, 298–305 (1973).

    MathSciNet  Google Scholar 

  18. Fielder, M. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25, 619–633 (1975).

    MathSciNet  Google Scholar 

  19. Fielder, M. Laplacian of graphs and algebraic connectivity. Comb. Graph Theory 25, 57–70 (1989).

    MathSciNet  Google Scholar 

  20. Mohar, B. Graph Theory, Combinatorics, and Applications 871–898 (Wiley, 1991).

    Google Scholar 

  21. Ng, A. Y., Jordan, M. I. & Weiss, Y. Advances in Neural Information Processing Systems Vol. 14 (MIT Press, 2001).

    Google Scholar 

  22. Courant, R. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7, 1–57 (1920).

    Article  MathSciNet  Google Scholar 

  23. Fischer, E. Über quadratische Formen mit reellen Koeffizienten. Mon. Math. Phys. 16, 234–249 (1905).

    Article  Google Scholar 

  24. Kolmogorov, V. & Zabih, R. What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. 26, 65–81 (2004).

    Article  Google Scholar 

  25. Reidys, C. M. & Stadler, P. F. Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  26. Mézard, M., Parisi, G. & Virasoro, M. A. Spin Glass Theory and Beyond (World Scientific, 1987).

    MATH  Google Scholar 

  27. Grover, L. K. Local search and the local structure of NP-complete problems. Oper. Res. Lett. 12, 235–243 (1992).

    Article  MathSciNet  Google Scholar 

  28. Blundell, S. J. & Blundell, K. M. Concepts in Thermal Physics (Oxford Univ. Press, 2008).

    MATH  Google Scholar 

  29. Jamakovic, A. & Van Mieghem, P. in Proc. 7th Int. IFIP-TC6 Networking Conf. on AdHoc and Sensor Networks, Wireless Networks, Next Generation Internet 183–194 (Springer, 2008).

    Google Scholar 

  30. Parshani, R., Buldyrev, S. V. & Havlin, S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish DGICYT Grants FIS2012-38266, FET projects PLEXMATH (318132) and the Generalitat de Catalunya 2009-SGR-838. F.R. acknowledges support from the Spanish Ministerio de Ciencia e Innovacion through the Ramón y Cajal programme. A.A. acknowledges the ICREA Academia and the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.R and A.A. designed and performed the research, and wrote the paper.

Corresponding author

Correspondence to Filippo Radicchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radicchi, F., Arenas, A. Abrupt transition in the structural formation of interconnected networks. Nature Phys 9, 717–720 (2013). https://doi.org/10.1038/nphys2761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2761

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing