Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aharonov–Bohm interferences from local deformations in graphene

Abstract

One of the most interesting aspects of graphene is the close relation between its structural and electronic properties. The observation of ripples both in free-standing graphene and in samples on a substrate has given rise to active investigation of the membrane-like properties of graphene, and the origin of the ripples remains one of the most interesting open problems concerning this system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields. These fields have become an experimental reality after the observation of the Landau levels that can form in graphene due to strain. Here we propose a device to detect microstresses in graphene based on a scanning-tunnelling-microscopy set-up able to measure Aharonov–Bohm interferences at the nanometre scale. The predicted interferences in the local density of states are created by the fictitious magnetic field associated with elastic deformations of the sample.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic sketch of the proposed device.
Figure 2
Figure 3: Strain-induced pseudo magnetic fields and AB interferences in the LDOS.
Figure 4: Proposed STM interferometer for measuring the strain in suspended graphene.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  2. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–187 (2007).

    Article  ADS  Google Scholar 

  5. González, J., Guinea, F. & Vozmediano, M. A. H. Continuum approximation to fullerene molecules. Phys. Rev. Lett. 69, 172–175 (1992).

    Article  ADS  Google Scholar 

  6. González, J., Guinea, F. & Vozmediano, M. A. H. The electronic spectrum of fullerenes from the Dirac equation. Nucl. Phys. B 406 [FS], 771–794 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  ADS  Google Scholar 

  8. Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    Article  ADS  Google Scholar 

  9. Stolyarova, E. et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl Acad. Sci. USA 104, 9209–9212 (2007).

    Article  ADS  Google Scholar 

  10. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    Article  ADS  Google Scholar 

  11. Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene.. Phys. Rev. Lett. 97, 196804 (2006).

    Article  ADS  Google Scholar 

  12. de Juan, F., Cortijo, A. & Vozmediano, M. A. H. Charge inhomogeneities due to smooth ripples in graphene sheets. Phys. Rev. B 76, 165409 (2007).

    Article  ADS  Google Scholar 

  13. Guinea, F., Horovitz, B. & Doussal, P. L. Gauge field induced by ripples in graphene. Phys. Rev. B 77, 205421 (2008).

    Article  ADS  Google Scholar 

  14. Kim, E-A. & Castro Neto, A. H. Graphene as an electronic membrane. Eur. Phys. Lett. 84, 57007 (2008).

    Article  ADS  Google Scholar 

  15. Guinea, F., Katsnelson, M. I. & Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 77, 075422 (2008).

    Article  ADS  Google Scholar 

  16. Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by engineering. Nature Phys. 6, 30–33 (2010).

    Article  ADS  Google Scholar 

  18. Guinea, F., Geim, A. K., Katsnelson, M. I. & Novoselov, K. S. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B 81, 035408 (2010).

    Article  ADS  Google Scholar 

  19. Levy, N. et al. Strain-induced pseudomagnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  ADS  Google Scholar 

  20. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  21. Washburn, S. & Webb, R. A. Aharonov–Bohm effect in normal metal. quantum coherence and transport. Adv. Phys. 35, 375–422 (1986).

    Article  ADS  Google Scholar 

  22. van Oudenaarden, A., Devoret, M. H., Nazarov, Y. & Mooij, J. E. Magneto-electric Aharonov–Bohm effect in metal rings. Nature 391, 768–778 (1998).

    Article  ADS  Google Scholar 

  23. Cano, A. & Paul, I. Aharonov–Bohm oscillations in the local density of states. Phys. Rev. B 80, 153401 (2009).

    Article  ADS  Google Scholar 

  24. Gibertini, M., Tomadin, A., Polini, M., Fasolino, A. & Katsnelson, M. Electron density distribution and screening in rippled graphene sheets. Phys. Rev. B 81, 125437 (2010).

    Article  ADS  Google Scholar 

  25. Teague, M. L. et al. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2 . Nano Lett. 9, 2542–2546 (2009).

    Article  ADS  Google Scholar 

  26. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  ADS  Google Scholar 

  27. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 625–655 (2007).

    Article  Google Scholar 

  28. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotechnol. 4, 562–566 (2009).

    Article  ADS  Google Scholar 

  29. Ni, Z. H. et al. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033–1039 (2008).

    Article  Google Scholar 

  30. Sun, G. F., Jia, J. F., Xue, Q. K. & Li, L. Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001). Nanotechnology 20, 355701 (2009).

    Article  ADS  Google Scholar 

  31. Fogler, M. M., Guinea, F. & Katsnelson, M. I. Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. Phys. Rev. Lett. 101, 226804 (2008).

    Article  ADS  Google Scholar 

  32. Prada, E., San-Jose, P., Leon, G., Fogler, M. M. & Guinea, F. Singular elastic strains and magnetoconductance of suspended graphene. Phys. Rev. B 81, 161402(R) (2010).

    Article  ADS  Google Scholar 

  33. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  ADS  Google Scholar 

  34. Cortijo, A. & Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293–308 (2007).

    Article  ADS  Google Scholar 

  35. Lammert, P. E. & Crespi, V. H. Graphene cones: Classification by fictitious flux and electronic properties. Phys. Rev. B. 69, 035406 (2004).

    Article  ADS  Google Scholar 

  36. Carr, L. D. & Lusk, M. T. Defect engineering: Graphene gets designer defects. Nature Nanotechnol. 5, 316–317 (2010).

    Article  ADS  Google Scholar 

  37. Yeh, N. et al. Strain-induced pseudo-magnetic fields and charging effects on CVD-grown graphene. http://arxiv.org/abs/1009.0081 (2010).

  38. Liu, G., Teweldebrhan, D. & Balandin, A. Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotech. Preprint at http://arxiv.org/abs/1012.5061 (2010).

  39. Ando, T. & Nakanishi, T. Impurity scattering in carbon nanotubes absence of back scattering. J. Phys. Soc. Jpn 67, 1704–1713 (1998).

    Article  ADS  Google Scholar 

  40. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  ADS  Google Scholar 

  41. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  ADS  Google Scholar 

  42. Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Impurities on graphene: Midgap states and migration barriers. Phys. Rev. B 80, 085428 (2009).

    Article  ADS  Google Scholar 

  43. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article  ADS  Google Scholar 

  44. Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272–279 (1958).

    Article  ADS  Google Scholar 

  45. Suzuura, H. & Ando, T. Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.C. thanks J. M. Gómez-Rodríguez for inspiring discussions, without which this work would not have been initiated. We also thank R. Aguado, E. V. Castro, A. Geim, A. G. Grushin, F. Guinea and M. I. Katsnelson for useful comments on the manuscript. Support from MEC (Spain) through grants FIS2008-00124, PIB2010BZ-00512 and NSF grant No. DMR-1005035 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work.

Corresponding author

Correspondence to María A. H. Vozmediano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Juan, F., Cortijo, A., Vozmediano, M. et al. Aharonov–Bohm interferences from local deformations in graphene. Nature Phys 7, 810–815 (2011). https://doi.org/10.1038/nphys2034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing