Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microscopic polarization in bilayer graphene

Abstract

Bilayer graphene contains, compared to single-layer graphene, additional states related to the symmetry of the layers. These states can lead to the opening of a bandgap, which is highly desirable for device applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Here, we report scanning tunnelling microscopy measurements that reveal that the microscopic nature of the bilayer gap is very different from what has been observed in previous macroscopic measurements, and from what is expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows a strong dependence on the disorder potential and varies spatially in both magnitude and sign on a microscopic level. Additional interaction-induced effects are observed on applying a magnetic field, as a subgap opens once the zero-orbital Landau level is placed at the Fermi energy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the bilayer graphene measurements and energy band diagrams in the quantum Hall regime.
Figure 2: STM topography images and disorder potential in bilayer graphene.
Figure 3: Magnetic quantization in bilayer graphene as a function of electric and magnetic fields.
Figure 4: Bilayer graphene potential energy asymmetries at varying gate voltage for electron and hole puddles.
Figure 5: Symmetry breaking in the LL(0,+);(1,+) quartet.

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

  3. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  4. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  5. Kuzmenko, A. B., Crassee, I., van der Marel, D., Blake, P. & Novoselov, K. S. Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 80, 165406 (2009).

    Article  ADS  Google Scholar 

  6. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  ADS  Google Scholar 

  7. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  8. Xia, F., Farmer, D. B., Lin, Y. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  ADS  Google Scholar 

  9. Min, H., Sahu, B., Banerjee, S. K. & MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007).

    Article  ADS  Google Scholar 

  10. Yan, J. & Fuhrer, M. S. Charge transport in dual gated bilayer graphene with corbino geometry. Nano Lett. 10, 4521–4525 (2010).

    Article  ADS  Google Scholar 

  11. Shizuya, K. Pseudo-zero-mode Landau levels and collective excitations in bilayer graphene. Phys. Rev. B 79, 165402 (2009).

    Article  ADS  Google Scholar 

  12. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  13. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  ADS  Google Scholar 

  14. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).

    Article  ADS  Google Scholar 

  15. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).

    Article  ADS  Google Scholar 

  16. Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  17. Barlas, Y., Côté, R., Nomura, K. & MacDonald, A. H. Intra-Landau-level cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 101, 097601 (2008).

    Article  ADS  Google Scholar 

  18. Jung, J., Zhang, F. & MacDonald, A. H. Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states. Phys. Rev. B 83, 115408 (2011).

    Article  ADS  Google Scholar 

  19. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article  ADS  Google Scholar 

  20. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  21. Zhang, L. M. et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008).

    Article  ADS  Google Scholar 

  22. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  ADS  Google Scholar 

  23. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: The role of potential fluctuations. Phys. Rev. B 82, 081407 (2010).

    Article  ADS  Google Scholar 

  24. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    Article  ADS  Google Scholar 

  25. Li, J., Martin, I., Buttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nature Phys. 7, 38–42 (2011).

    Article  ADS  Google Scholar 

  26. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nature Phys. 5, 722–726 (2009).

    Article  ADS  Google Scholar 

  27. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009).

    Article  ADS  Google Scholar 

  28. Jung, S. et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nature Phys. 7, 245–251 (2011).

    Article  ADS  Google Scholar 

  29. Efros, A. & Shklovskii, B. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49–L51 (1975).

    Article  ADS  Google Scholar 

  30. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  ADS  Google Scholar 

  31. Dial, O. E., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. High-resolution spectroscopy of two-dimensional electron systems. Nature 448, 176–179 (2007).

    Article  ADS  Google Scholar 

  32. Hashimoto, K. et al. Quantum hall transition in real space: From localized to extended states. Phys. Rev. Lett. 101, 256802 (2008).

    Article  ADS  Google Scholar 

  33. Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).

    Article  ADS  Google Scholar 

  34. Nandkishore, R. & Levitov, L. Dynamical screening and excitonic instability in bilayer graphene. Phys. Rev. Lett. 104, 156803 (2010).

    Article  ADS  Google Scholar 

  35. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article  ADS  Google Scholar 

  36. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  37. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).

    Article  ADS  Google Scholar 

  38. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  Google Scholar 

  39. Partoens, B. & Peeters, F.M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge M. Stiles, S. Adam, H. Min, A. H. MacDonald and L. Levitov for fruitful discussions and thank I. Calizo and A. Hight-Walker for Raman spectroscopy characterization of the graphene system.

Author information

Authors and Affiliations

Authors

Contributions

The graphene sample was fabricated by S.J. and N.N.K. STM/STS measurements were performed by G.M.R., S.J., N.N.K. and J.A.S. The data analysis and preparation of the manuscript were performed by G.M.R., S.J., J.A.S., D.B.N. and N.B.Z.

Corresponding authors

Correspondence to Nikolai B. Zhitenev or Joseph A. Stroscio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutter, G., Jung, S., Klimov, N. et al. Microscopic polarization in bilayer graphene. Nature Phys 7, 649–655 (2011). https://doi.org/10.1038/nphys1988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing