Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal equivalence of DNA duplexes without calculation of melting temperature

Abstract

The common key to nearly all processes involving DNA is the hybridization and melting of the double helix: from transmission of genetic information and RNA transcription, to polymerase chain reaction and DNA microarray analysis, DNA mechanical nanodevices and DNA computing. Selecting DNA sequences with similar melting temperatures is essential for many applications in biotechnology. We show that instead of calculating these temperatures, a single parameter can be derived from a statistical-mechanics model that conveniently represents the thermodynamic equivalence of DNA sequences. This parameter is shown to order experimental melting temperatures correctly, is much more readily obtained than the melting temperature, and is easier to handle than the numerous parameters of empirical regression models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Z ω(Λ) versus Λ order parameter ω.
Figure 2: Maximal ordering parameter ωmax versus temperature.
Figure 3: Experimental melting temperatures T m versus order parameter ωmax1/2.
Figure 4: Calculated regression coefficient a 1.

Similar content being viewed by others

References

  1. Prohofsky, E. W. Solitons hiding in DNA and their possible significance in RNA transcription. Phys. Rev. A 38, 1538–1541 (1988).

    Article  ADS  Google Scholar 

  2. Breslauer, K., Frank, R., Blocker, H. & Marky, L. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA 83, 3746–3750 (1986).

    Article  ADS  Google Scholar 

  3. SantaLucia, J. Jr, Allawi, H. T. & Seneviratne, P. A. Improved nearest-neighbour parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

    Article  Google Scholar 

  4. Owczarzy, R. et al. Predicting sequence dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–239 (1998).

    Article  Google Scholar 

  5. Owczarzy, R. et al. Effects of sodium ions on DNA duplex oligomers: Improved predictions of melting temperatures. Biochemistry 43, 3537–3554 (2004).

    Article  Google Scholar 

  6. Pancoska, P., Moravek, Z. & Moll, U. M. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using eulerian graphs. Nucl. Acids Res. 32, 4630–4645 (2004).

    Article  Google Scholar 

  7. Peyrard, M. & Bishop, A. R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–2757 (1989).

    Article  ADS  Google Scholar 

  8. Dauxois, T., Peyrard, M. & Bishop, A. R. Entropy-driven DNA denaturation. Phys. Rev. E 47, R44–R47 (1993).

    Article  ADS  Google Scholar 

  9. Dauxois, T. & Peyrard, M. Entropy-driven transition in a one-dimensional system. Phys. Rev. E 51, 4027–4040 (1995).

    Article  ADS  Google Scholar 

  10. Zhang, Y.-L., Zheng, W.-M., Liu, J.-X. & Chen, Y. Z. Theory of DNA melting based on the Peyrard-Bishop model. Phys. Rev. E 56, 7100–7115 (1997).

    Article  ADS  Google Scholar 

  11. Campa, A. & Giansanti, A. Experimental tests of the Peyard-Bishop model applied to the melting of very short DNA chains. Phys. Rev. E 58, 3585 (1998).

    Article  ADS  Google Scholar 

  12. Theodorakopoulos, N., Dauxois, T. & Peyrard, M. Order of the phase transition in models of DNA thermal denaturation. Phys. Rev. Lett. 85, 6–9 (2000).

    Article  ADS  Google Scholar 

  13. Theodorakopoulos, N., Peyrard, M. & MacKay, R. S. Nonlinear structure and thermodynamic instabilities in a one-dimensional lattice system. Phys. Rev. Lett. 93, 258101 (2004).

    Article  ADS  Google Scholar 

  14. Cule, D. & Hwa, T. Denaturation of heterogeneous DNA. Phys. Rev. Lett. 79, 2375–2378 (1997).

    Article  ADS  Google Scholar 

  15. Blake, R. & Delcourt, S. Thermal stability of DNA. Nucl. Acids Res. 26, 3323–3332 (1998).

    Article  Google Scholar 

  16. Wu, P., Nakano, S. & Sugimoto, N. Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. Eur. J. Biochem. 269, 2821–2830 (2002).

    Article  Google Scholar 

  17. Tikhomirova, A., Taulier, N. & Chalikian, T. V. Energetics of nucleic acid stability: The effect of ΔC P . J. Am. Chem. Soc. 126, 16387–16394 (2004).

    Article  Google Scholar 

  18. Wartell, R. M. & Benight, A. S. Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys. Rep. 126, 67–107 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Councils UK through the Basic Technology Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., Haslam, N., Whiteford, N. et al. Thermal equivalence of DNA duplexes without calculation of melting temperature. Nature Phys 2, 55–59 (2006). https://doi.org/10.1038/nphys189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing