Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Space–time characterization of ultra-intense femtosecond laser beams

Abstract

Femtosecond lasers can now deliver ultrahigh intensities at focus, making it possible to induce relativistic motion of charged particles with light and opening the way to new generations of compact particle accelerators and X-ray sources. With diameters of up to tens of centimetres, ultra-intense laser beams tend to suffer from spatiotemporal distortions, that is, a spatial dependence of their temporal properties that can dramatically reduce their peak intensities. At present, however, these intense electromagnetic fields are characterized and optimized in space and time separately. Here, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, and reveal the spatiotemporal distortions that can affect such beams. This new measurement capability opens the way to in-depth characterization and optimization of ultra-intense lasers and ultimately to the advanced control of relativistic motion of matter with femtosecond laser beams structured in space–time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of collimated femtosecond laser beams with different STCs.
Figure 2: Consequences of STCs at focus.
Figure 3: Principle of the TERMITES spatiotemporal measurement technique.
Figure 4: Complete reconstructions of the E field of a 100 TW laser beam.
Figure 5: Properties of the laser beam at focus.

Similar content being viewed by others

References

  1. Rullière, C. (ed.) Femtosecond Laser Pulses 2nd edn (Springer, 2007).

    Google Scholar 

  2. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Chang, Z. Fundamentals of Attosecond Optics (CRC, 2011).

    Google Scholar 

  5. Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  6. Trebino, R. (ed.) Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).

    Book  Google Scholar 

  7. Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Article  Google Scholar 

  8. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  9. Akturk, S., Gu, X., Bowlan, P. & Trebino, R. Spatio-temporal couplings in ultrashort laser pulses. J. Opt. 12, 093001 (2010).

    Article  ADS  Google Scholar 

  10. Bourassin-Bouchet, C., Stephens, M., de Rossi, S., Delmotte, F. & Chavel, P. Duration of ultrashort pulses in the presence of spatio-temporal coupling. Opt. Express 19, 17357–17371 (2011).

    Article  ADS  Google Scholar 

  11. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

    Article  ADS  Google Scholar 

  12. Bourassin-Bouchet, C., Mang, M. M., Delmotte, F., Chavel, P. & de Rossi, S. How to focus an attosecond pulse. Opt. Express 21, 2506–2520 (2013).

    Article  ADS  Google Scholar 

  13. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    Article  ADS  Google Scholar 

  14. Trebino, R. et al. Simple devices for measuring complex ultrashort pulses. Laser Photon. Rev. 3, 314–342 (2009).

    Article  ADS  Google Scholar 

  15. Gabolde, P. & Trebino, R. Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography. Opt. Express 14, 11460–11467 (2006).

    Article  ADS  Google Scholar 

  16. Wyatt, A. S., Walmsley, I. A., Stibenz, G. & Steinmeyer, G. Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction. Opt. Lett. 31, 1914–1916 (2006).

    Article  ADS  Google Scholar 

  17. Bowlan, P., Gabolde, P. & Trebino, R. Directly measuring the spatio-temporal electric field of focusing ultrashort pulses. Opt. Express 15, 10219–10230 (2007).

    Article  ADS  Google Scholar 

  18. Bragheri, F. et al. Complete retrieval of the field of ultrashort optical pulses using the angle-frequency spectrum. Opt. Lett. 33, 2952–2954 (2008).

    Article  ADS  Google Scholar 

  19. Cousin, S. L., Bueno, J. M., Forget, N., Austin, D. R. & Biegert, J. Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor. Opt. Lett. 37, 3291–3293 (2012).

    Article  ADS  Google Scholar 

  20. Eilenberger, F., Brown, A., Minardi, S. & Pertsch, T. Imaging cross-correlation FROG: measuring ultrashort, complex, spatiotemporal fields. Opt. Express 21, 25968–25976 (2013).

    Article  ADS  Google Scholar 

  21. Gallet, V., Kahaly, S., Gobert, O. & Quéré, F. Dual spectral-band interferometry for spatio-temporal characterization of high-power femtosecond lasers. Opt. Lett. 39, 4687–4690 (2014).

    Article  ADS  Google Scholar 

  22. Powell, D. Europe sets sights on lasers. Nature 14, 264–265 (2013).

    Article  ADS  Google Scholar 

  23. Chu, Y. et al. High-contrast 2.0 petawatt Ti:sapphire laser system. Opt. Express 21, 29231–29239 (2013).

    Article  ADS  Google Scholar 

  24. Sung, J. H., Lee, S. K., Yu, T. J., Jeong, T. M. & Lee, J. 0.1 Hz 1.0 PW Ti:sapphire laser. Opt. Lett. 35, 3021–3023 (2010).

    Article  ADS  Google Scholar 

  25. Gaul, E. W. et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt. 49, 1676–1681 (2010).

    Article  ADS  Google Scholar 

  26. Miranda, M. et al. Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry. Opt. Lett. 39, 5142–5145 (2014).

    Article  ADS  Google Scholar 

  27. Gallet, V. (ed.) Dispositifs Expérimentaux pour la Caractérisation Spatio-Temporelle de Chaines Laser Femtosecondes Haute-Puissance (Thèse de l'Univ. Paris XI, 2014).

    Google Scholar 

  28. Gallmann, L. et al. Spatially resolved amplitude and phase characterization of femtosecond optical pulses. Opt. Lett. 26, 96–98 (2001).

    Article  ADS  Google Scholar 

  29. Akturk, S., Gu, X., Gabolde, P. & Trebino, R. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams. Opt. Express 13, 8642–8661 (2005).

    Article  ADS  Google Scholar 

  30. Hebling, J. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron. 28, 1759–1763 (1996).

    Article  Google Scholar 

  31. Bor, Z. Distortion of femtosecond laser pulses in lenses. Opt. Lett. 14, 119–121 (1989).

    Article  ADS  Google Scholar 

  32. Moulet, A., Grabielle, S., Cornaggia, C., Forget, N. & Oksenhendler, T. Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry. Opt. Lett. 35, 3856–3858 (2010).

    Article  ADS  Google Scholar 

  33. Kahaly, S. et al. Investigation of amplitude spatio-temporal couplings at the focus of a 100 TW–25 fs laser. Appl. Phys. Lett. 104, 054103 (2014).

    Article  ADS  Google Scholar 

  34. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  35. Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser–plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013).

    Article  ADS  Google Scholar 

  36. Teubner, U. & Gibbon, P. High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009).

    Article  ADS  Google Scholar 

  37. Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B 43, 213001 (2010).

    Article  ADS  Google Scholar 

  38. Vincenti, H. & Quéré, F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108, 113904 (2012).

    Article  ADS  Google Scholar 

  39. Pariente, G. & Quéré, F. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses. Opt. Lett. 40, 2037–2040 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. d'Oliveira, F. Réau, C. Pothier and D. Garzella for operating the UHI100 laser source. The research leading to these results has received funding from the European Research Council (ERC grant agreements nos 240013 and 334948). A.B. acknowledges support from the Marie Curie Fellowship EU-FP7-IEF-ALPINE (627856) and G.P. IDEX Paris Saclay for his PhD grant.

Author information

Authors and Affiliations

Authors

Contributions

G.P., V.G. and F.Q. developed the TERMITES technique. G.P. and V.G. built the experimental set-up and G.P. developed the data processing program and analysis/visualization tools with initial contributions from V.G. The measurements were performed and analysed by G.P. and A.B. F.Q. and O.G. supervised the overall work.

Corresponding author

Correspondence to F. Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1220 kb)

Supplementary information

Supplementary movie 1 (GIF 13033 kb)

Supplementary information

Supplementary movie 2 (GIF 4931 kb)

Supplementary information

Supplementary movie 3 (GIF 8934 kb)

Supplementary information

Supplementary movie 4 (GIF 3515 kb)

Supplementary information

Supplementary movie 5 (GIF 2990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pariente, G., Gallet, V., Borot, A. et al. Space–time characterization of ultra-intense femtosecond laser beams. Nature Photon 10, 547–553 (2016). https://doi.org/10.1038/nphoton.2016.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing