Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum information transfer using photons

Abstract

Optical communication channels have redefined the scope and applications of classical computing; similarly, photonic transfer of quantum information promises to open new horizons for quantum computing. The implementation of light–matter interfaces that preserve quantum information is technologically challenging, but key building blocks for such devices have recently been demonstrated by several research groups. Here, we outline the theoretical framework for information transfer between the nodes of a quantum network, review the current experimental state of the art and discuss the prospects for hybrid systems currently in development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A modified version of the deterministic atom–photon interface proposed by Cirac and co-workers8.
Figure 2: A heralded interface between two quantum memories does not rely on a direct optical connection between the memories.
Figure 3: One example of a light–matter interface.
Figure 4: A quantum process described by the matrix χ maps an arbitrary input density matrix ρin to the output matrix ρout.
Figure 5: Several platforms offer promising new approaches to quantum information transfer.

Similar content being viewed by others

References

  1. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    ADS  Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  3. Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    ADS  Google Scholar 

  4. Ma, X.-S. et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012).

    ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  MATH  Google Scholar 

  6. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. Ann. Symp. Found. Comput. Sci. 124–134 (1994).

  7. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  Google Scholar 

  8. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  Google Scholar 

  9. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).

    MATH  Google Scholar 

  10. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

    ADS  Google Scholar 

  11. Van Enk, S. J., Cirac, J. I. & Zoller, P. Ideal quantum communication over noisy channels: a quantum optical implementation. Phys. Rev. Lett. 78, 4293–4296 (1997).

    ADS  Google Scholar 

  12. Van Enk, S. J., Cirac, J. I. & Zoller, P. Purifying two-bit quantum gates and joint measurements in cavity QED. Phys. Rev. Lett. 79, 5178–5181 (1997).

    ADS  Google Scholar 

  13. Duan, L.-M. & Monroe, C. Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).

    ADS  Google Scholar 

  14. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    ADS  Google Scholar 

  15. Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    ADS  Google Scholar 

  16. Feng, X.-L., Zhang, Z.-M., Li, X. D., Gong, S.-Q. & Xu, Z.-Z. Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90, 217902 (2003).

    ADS  Google Scholar 

  17. Duan, L.-M. & Kimble, H. J. Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003).

    ADS  Google Scholar 

  18. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

    ADS  Google Scholar 

  19. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    ADS  Google Scholar 

  21. Puppe, T. et al. Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Phys. Rev. Lett. 99, 013002 (2007).

    ADS  Google Scholar 

  22. Sauer, J. A., Fortier, K. M., Chang, M. S., Hamley, C. D. & Chapman, M. S. Cavity QED with optically transported atoms. Phys. Rev. A 69, 051804 (2004).

    ADS  Google Scholar 

  23. Nußmann, S. et al. Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95, 173602 (2005).

    ADS  Google Scholar 

  24. Khudaverdyan, M. et al. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system. Phys. Rev. Lett. 103, 123006 (2009).

    ADS  Google Scholar 

  25. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS  Google Scholar 

  26. Schrader, D. et al. An optical conveyor belt for single neutral atoms. Appl. Phys. B 73, 819–824 (2001).

    ADS  Google Scholar 

  27. Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

    Google Scholar 

  28. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    ADS  Google Scholar 

  29. Steiner, M., Meyer, H. M., Deutsch, C., Reichel, J. & Köhl, M. Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110, 043003 (2013).

    ADS  Google Scholar 

  30. Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001).

    ADS  Google Scholar 

  31. Russo, C. et al. Raman spectroscopy of a single ion coupled to a high-finesse cavity. Appl. Phys. B 95, 205–212 (2009).

    ADS  Google Scholar 

  32. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).

    ADS  Google Scholar 

  33. Stute, A. et al. Toward an ion–photon quantum interface in an optical cavity. Appl. Phys. B 107, 1145–1157 (2012).

    ADS  Google Scholar 

  34. Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013).

    ADS  Google Scholar 

  35. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Google Scholar 

  36. Horak, P., Hechenblaikner, G., Gheri, K. M., Stecher, H. & Ritsch, H. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79, 4974–4977 (1997).

    ADS  Google Scholar 

  37. Chan, H. W., Black, A. T. & Vuletić, V. Observation of collective-emission-induced cooling of atoms in an optical cavity. Phys. Rev. Lett. 90, 063003 (2003).

    ADS  Google Scholar 

  38. Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).

    ADS  Google Scholar 

  39. Fortier, K. M., Kim, S. Y., Gibbons, M. J., Ahmadi, P. & Chapman, M. S. Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).

    ADS  Google Scholar 

  40. Leibrandt, D. R., Labaziewicz, J., Vuletić, V. & Chuang, I. L. Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009).

    ADS  Google Scholar 

  41. Kubanek, A. et al. Photon-by-photon feedback control of a single-atom trajectory. Nature 462, 898–901 (2009).

    ADS  Google Scholar 

  42. Koch, M. et al. Feedback cooling of a single neutral atom. Phys. Rev. Lett. 105, 173003 (2010).

    ADS  Google Scholar 

  43. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    ADS  Google Scholar 

  44. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007).

    ADS  Google Scholar 

  45. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    ADS  Google Scholar 

  46. Lettner, M. et al. Remote entanglement between a single atom and a Bose-Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011).

    ADS  Google Scholar 

  47. Stute, A. et al. Quantum-state transfer from an ion to a photon. Nature Photon. 7, 219–222 (2013).

    ADS  Google Scholar 

  48. Häffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Google Scholar 

  49. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    ADS  Google Scholar 

  50. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    ADS  Google Scholar 

  51. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).

    ADS  Google Scholar 

  52. Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005).

    ADS  Google Scholar 

  53. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    ADS  Google Scholar 

  54. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    ADS  Google Scholar 

  55. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS  Google Scholar 

  56. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    ADS  Google Scholar 

  57. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    ADS  Google Scholar 

  58. Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    ADS  Google Scholar 

  59. Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).

    ADS  Google Scholar 

  60. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

  61. Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS  Google Scholar 

  62. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS  Google Scholar 

  63. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS  Google Scholar 

  64. Usmani, I. et al. Heralded quantum entanglement between two crystals. Nature Photon. 6, 234–237 (2012).

    ADS  Google Scholar 

  65. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Google Scholar 

  66. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    ADS  Google Scholar 

  67. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    ADS  Google Scholar 

  68. Maunz, P. et al. Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102, 250502 (2009).

    ADS  Google Scholar 

  69. Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

    ADS  Google Scholar 

  70. Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    ADS  Google Scholar 

  71. Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Phys. 9, 400–404 (2013).

    ADS  Google Scholar 

  72. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 389–394 (Cambridge Univ. Press, 2010).

    Google Scholar 

  73. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    ADS  MATH  Google Scholar 

  74. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Google Scholar 

  75. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Google Scholar 

  76. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Google Scholar 

  77. Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS  Google Scholar 

  78. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS  Google Scholar 

  79. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    ADS  Google Scholar 

  80. Maiwald, R. et al. Stylus ion trap for enhanced access and sensing. Nature Phys. 5, 551–554 (2009).

    ADS  Google Scholar 

  81. Shu, G., Kurz, N., Dietrich, M. R. & Blinov, B. B. Efficient fluorescence collection from trapped ions with an integrated spherical mirror. Phys. Rev. A 81, 042321 (2010).

    ADS  Google Scholar 

  82. Streed, E. W., Norton, B. G., Jechow, A., Weinhold, T. J. & Kielpinski, D. Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011).

    ADS  Google Scholar 

  83. Brady, G. R. et al. Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B 103, 801–808 (2011).

    ADS  Google Scholar 

  84. Merrill, J. T. et al. Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13, 103005 (2011).

    Google Scholar 

  85. VanDevender, A. P., Colombe, Y., Amini, J., Leibfried, D. & Wineland, D. J. Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105, 023001 (2010).

    ADS  Google Scholar 

  86. Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. App. Phys. Lett. 97, 241901 (2010).

    ADS  Google Scholar 

  87. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    ADS  Google Scholar 

  88. Casabone, B. et al. Heralded entanglement of two ions in an optical cavity. Phys. Rev. Lett. 111, 100505 (2013).

    ADS  Google Scholar 

  89. Zhang, R., Garner, S. R. & Hau, L. V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103, 233602 (2009).

    ADS  Google Scholar 

  90. Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009).

    ADS  Google Scholar 

  91. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    ADS  Google Scholar 

  92. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    ADS  Google Scholar 

  93. Lidar, D. A. & Whaley, K. B. in Irreversible Quantum Dynamics (eds Benatti, F. & Floreanini, R.) 83–120 (Lecture Notes in Physics Series 622, Springer, 2003).

    Google Scholar 

  94. Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010).

    ADS  Google Scholar 

  95. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  Google Scholar 

  96. Lang, C. et al. Correlations, indistinguishability and entanglement in Hong–Ou–Mandel experiments at microwave frequencies. Nature Phys. 9, 345–348 (2013).

    ADS  Google Scholar 

  97. Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010).

    ADS  Google Scholar 

  98. Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

    ADS  Google Scholar 

  99. Zhu, X. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).

    ADS  Google Scholar 

  100. Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).

    ADS  Google Scholar 

  101. Probst, S. et al. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).

    ADS  Google Scholar 

  102. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).

    ADS  Google Scholar 

  103. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS  Google Scholar 

  104. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    ADS  Google Scholar 

  105. Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).

    ADS  Google Scholar 

  106. Gündoğan, M., Ledingham, P. M., Almasi, A., Cristiani, M. & de Riedmatten, H. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett. 108, 190504 (2012).

    ADS  Google Scholar 

  107. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

    ADS  Google Scholar 

  108. Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    ADS  Google Scholar 

  109. Kuhn, A., Hennrich, M., Bondo, T. & Rempe, G. Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999).

    ADS  Google Scholar 

  110. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Olmschenk, C. Monroe, W. Rosenfeld, J. Majer, P. Bushev and H. de Riedmatten for providing images and feedback and G. Kirchmair, S. Ritter, B. Casabone, K. Friebe and Y. Colombe for helpful comments. We gratefully acknowledge support from the Austrian Science Fund (FWF) (Project Nos. F4002-N16, F4019-N16 and V252), the European Research Council through the Cryogenic Traps for Entanglement Research with IONs (CRYTERION) Project, the European Commission via the Atomic Quantum Technologies (AQUTE) Integrating Project, the Intelligence Advanced Research Projects Agency and the Institut für Quanteninformation GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Northup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northup, T., Blatt, R. Quantum information transfer using photons. Nature Photon 8, 356–363 (2014). https://doi.org/10.1038/nphoton.2014.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing