Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amplification of long-range surface plasmons by a dipolar gain medium

Abstract

Surface plasmon–polaritions, collective electron oscillations coupled to light waves at the surface of a metal, show unique properties that are valuable in a broad range of scientific fields. However, the intrinsic propagation loss of these waves poses a fundamental problem to many potential applications. To overcome this drawback, researchers have explored the possibility of loss compensation by means of surface plasmon–polarition amplification. Here we provide the first direct measurement of gain in propagating plasmons using the long-range surface plasmon–polariton supported by a symmetric metal stripe waveguide that incorporates optically pumped dye molecules in solution as the gain medium. The measured mode power gain is 8.55 dB mm−1. Furthermore, it is shown that this new class of amplifier benefits from reduced spontaneous emission into the amplified mode, potentially leading to low-noise optical amplification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Guiding structure.
Figure 2: Active operation.
Figure 3: Reduced spontaneous emission.

References

  1. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  2. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature. 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  3. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  4. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  5. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 6, 442–453 (2008).

    Article  ADS  Google Scholar 

  6. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  7. Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express. 12, 4072–4079 (2004).

    Article  ADS  Google Scholar 

  8. Avrutsky, I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys. Rev. B. 70, 155416 (2004).

    Article  ADS  Google Scholar 

  9. Okamoto, T., H'Dhili, F. & Kawata, S. Towards plasmonic band gap laser. Appl. Phys. Lett. 85, 3968–3970 (2004).

    Article  ADS  Google Scholar 

  10. Maier, S. A. Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun. 258, 295–299 (2006).

    Article  ADS  Google Scholar 

  11. Winter, G., Wedge, S. & Barnes, W. L. Can lasing at visible wavelength be achieved using the low-loss long-range surface plasmon–polariton mode? New J. Phys. 8, 125 (2006).

    Article  ADS  Google Scholar 

  12. Alam, M. Z., Meier, J., Aitchison, J. S. & Mojahedi, M. Gain assisted surface plasmon polariton in quantum well structures. Opt. Express. 15, 176–182 (2007).

    Article  ADS  Google Scholar 

  13. De Leon, I. & Berini, P. Theory of surface plasmon–polariton amplification in planar structures incorporating dipolar gain media. Phys. Rev. B. 78, 161401(R) (2008).

    Article  ADS  Google Scholar 

  14. De Leon, I. & Berini, P. Modeling surface plasmon–polariton gain in planar metallic structures. Opt. Express. 17, 20191–20202 (2009).

    Article  ADS  Google Scholar 

  15. Seidel, J., Grafstrom, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

    Article  ADS  Google Scholar 

  16. Noginov, M. A. et al. Compensation of loss in propagating surface plasmons polariton by gain in adjacent dielectric medium. Opt. Express. 16, 1385–1392 (2008).

    Article  ADS  Google Scholar 

  17. Noginov, M. A. et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008).

    Article  ADS  Google Scholar 

  18. Ambati, M. et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008).

    Article  ADS  Google Scholar 

  19. Grandidier, J. et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

    Article  ADS  Google Scholar 

  20. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature. 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  21. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  22. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express. 17, 11107–11112 (2009).

    Article  ADS  Google Scholar 

  23. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature. 460, 1110–1113 (2009).

    Article  ADS  Google Scholar 

  24. Kovacs, G. J. Optical excitation of surface plasma waves in an indium film bounded by dielectric layers. Thin Solid Films 60, 33–44 (1979).

    Article  ADS  Google Scholar 

  25. Fukui, M. et al. Lifetimes of surface plasmons in thin silver films. Phys. Stat. Sol. B. 91, K61–K64 (1979).

    Article  ADS  Google Scholar 

  26. Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1927–1930 (1981).

    Article  ADS  Google Scholar 

  27. Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B. 33, 5186–5201 (1986).

    Article  ADS  Google Scholar 

  28. Yang, F., Sambles, J. R., & Bradberry, G. W. Long-range surface modes supported by thin films. Phys. Rev. B. 44, 5855–5872 (1991).

    Article  ADS  Google Scholar 

  29. Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484–588 (2009).

    Article  Google Scholar 

  30. Berini, P. Plasmon–polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B. 61, 10484–10503 (2000).

    Article  ADS  Google Scholar 

  31. Jette-Charbonneau, S., Charbonneau, R., Lahoud, N., Mattiussi, G. & Berini, P. Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment. IEEE J. Quantum Electron. 98, 1480–1491 (2005).

    Article  ADS  Google Scholar 

  32. Bozhevolnyi, S. I., Boltasseva, A., Sondergaard, T., Nikolajsen, T. & Leosson, K. Photonic bandgap structures for long-range surface plasmon polaritons. Opt. Commun. 250, 328–333 (2005).

    Article  ADS  Google Scholar 

  33. Charbonneau, R. et al. Passive integrated optics elements based on long-range surface plasmon polaritons. J. Lightwave Technol. 24, 477–494 (2006).

    Article  ADS  Google Scholar 

  34. Boltasseva, A. et al. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23, 413–422 (2005).

    Article  ADS  Google Scholar 

  35. Berini, P. Bulk and surface sensitivities of surface plasmon waveguides. New J. Phys. 10, 105010 (2008).

    Article  ADS  Google Scholar 

  36. Berini, P., Charbonneau, R., Lahoud, N. & Mattiussi, G. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys. 98, 043109 (2005).

    Article  ADS  Google Scholar 

  37. Sperber, P., Spangler, W., Meier, B. & Penzkofer, A. Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers. Opt. Quantum Electron. 20, 395–431 (1988).

    Article  Google Scholar 

  38. Bransden, B. H. & Joachain, C. J. Physics of Atoms and Molecules (Longman, 1983).

    Google Scholar 

  39. Mourou, G. & Denariez, M. M. Polarization of fluorescence and bleaching of dyes in a high-viscosity solvent, IEEE J. Quantum Electron. QE9, 787–790 (1973).

    Article  ADS  Google Scholar 

  40. Reyzer, K. C. & Casperson, L. W. Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distribution. J. Appl. Phys. 51, 6083–6090 (1980).

    Article  ADS  Google Scholar 

  41. Valeur, B. Molecular Fluorescence, Principles and Applications (Wiley-VCH, 2002).

    Google Scholar 

  42. Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Google Scholar 

  43. Ford, G. W. & Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195–287 (1984).

    Article  ADS  Google Scholar 

  44. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. J.C. (Tito) Scaiano, M. Grenier, and other members of the photochemistry laboratory at the University of Ottawa for their assistance in measuring the IR140 absorption spectrum. This work was generously supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

I.D.L. carried out the experimental work, performed the theoretical analysis, and prepared the manuscript. P.B. directed the project and contributed to the manuscript preparation. I.D.L and P.B. designed the experiments and the set-up, and analysed and interpreted the experimental results.

Corresponding author

Correspondence to Pierre Berini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leon, I., Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon 4, 382–387 (2010). https://doi.org/10.1038/nphoton.2010.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing