Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasi-periodic distributed feedback laser

Abstract

Although lasers have found numerous applications, their design is often still based on the concept of a gain medium within a mirror cavity. Exceptions to this are distributed feedback lasers1, in which feedback develops along a periodic structure, or random lasers, which do not require any form of cavity2. Random lasers have very rich emission spectra, but are difficult to control. Distributed feedback devices, conversely, have the same limited design possibilities of regular lasers. We show, by making use of a quasi-crystalline structure in an electrically pumped device, that several advantages of a random laser can be combined with the predictability of a distributed feedback resonator. We have constructed a terahertz quantum cascade laser based on a Fibonacci distributed feedback sequence, and show that engineering of the self-similar spectrum of the grating allows features beyond those possible with traditional periodic resonators, such as directional output independent of the emission frequency and multicolour operation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Periodic versus quasi-periodic gratings.
Figure 2: Emission spectra from devices with different grating periods and duty cycles.
Figure 3: Far-field pattern.
Figure 4: Light–current characteristics.
Figure 5: Two-colour DFB laser.

References

  1. Morthier, G. & Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes (Artech House, 1997).

    Google Scholar 

  2. Wiersma, D. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  3. Fujiwara, T. & Ogawa, T. Quasicrystals (Springer-Verlag, 1990).

    Book  Google Scholar 

  4. Kohmoto M., Sutherland B. & Iguchi, K. Localization of optics: quasiperiodic media. Phys. Rev. Lett. 58, 2436–2438 (1987).

    Article  ADS  Google Scholar 

  5. Gellermann, W., Kohmoto, M., Sutherland, B. & Taylor, P.C. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633–636 (1994).

    Article  ADS  Google Scholar 

  6. Hattori, T., Tsurumachi, N., Kawato, S. & Nakatsuka, H. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B 50, 4220–4223 (1994).

    Article  ADS  Google Scholar 

  7. Dal Negro, L. et al. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003).

    Article  ADS  Google Scholar 

  8. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005).

    Article  ADS  Google Scholar 

  9. Ledermann, A. et al. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater. 5, 942–945 (2006).

    Article  ADS  Google Scholar 

  10. Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007).

    Article  ADS  Google Scholar 

  11. Gumbs, G. & Ali, M. K. Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. Phys. Rev. Lett. 60, 1081–1084 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  12. Notomi, M., Suzuki, H., Tamamura, T. & Edagawa, K. Penrose-lattice photonic quasicrystal laser. Phys. Rev. Lett. 92, 123906 (2004).

    Article  ADS  Google Scholar 

  13. Nozaki, K. & Baba, T. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett. 84, 4875–4877 (2004)

    Article  ADS  Google Scholar 

  14. Köhler, R. et al. Terahertz semiconductor–heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  15. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  16. Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quantum Electron. 42, 257–265 (2006).

    Article  ADS  Google Scholar 

  17. Mahler, L. et al. Finite size effects in surface emitting terahertz quantum cascade lasers. Opt. Express 17, 6703–6709 (2009).

    Article  ADS  Google Scholar 

  18. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2007).

    Article  ADS  Google Scholar 

  19. Belkin, M. A. et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photon. 1, 288–292 (2007).

    Article  ADS  Google Scholar 

  20. Tredicucci, A. et al. A multiwavelength semiconductor laser. Nature 396, 350–353 (1998).

    Article  ADS  Google Scholar 

  21. Norton, A. & de Sterke, C. Aperiodic 1-dimensional structures for quasi-phase matching. Opt. Express 12, 841–846 (2004).

    Article  ADS  Google Scholar 

  22. Mahler, L. et al. Vertically emitting microdisk lasers. Nature Photon. 3, 46–49 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Witzigmann for useful discussions. This work was supported in part by the European Commission through the Research and Training Network ‘Physics of Intersubband Semiconductor Emitters’ and the integrated project ‘Teranova’. The authors also acknowledge support from the Italian Ministry of Research through the project ‘National Laboratory for Nanotechnology applied to Genomics and Post-Genomics’.

Author information

Authors and Affiliations

Authors

Contributions

L.M, A.T. and D.W. conceived the experiment. L.M. fabricated the devices and carried out measurements and simulations. C.W. performed part of the processing and H.E.B grew the semiconductor heterostructure. All authors discussed the results and implications and contributed to the manuscript at various stages.

Corresponding author

Correspondence to Alessandro Tredicucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, L., Tredicucci, A., Beltram, F. et al. Quasi-periodic distributed feedback laser. Nature Photon 4, 165–169 (2010). https://doi.org/10.1038/nphoton.2009.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing