Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers

Abstract

Colloidal quantum dots, with their tunable luminescence properties, are uniquely suited for use as lumophores in light-emitting devices for display technologies and large-area planar lighting1,2,3,4,5,6,7,8,9,10. In contrast to epitaxially grown quantum dots, colloidal quantum dots can be synthesized as highly monodisperse colloids and solution deposited over large areas into densely packed, solid-state multilayers, which have shown promise as efficient optical gain media11. To be a viable platform for colour-tunable electrically pumped lasers, the present-generation quantum-dot LEDs must be modified to withstand the extended, high-current-density operation needed to achieve population inversion. This requirement necessitates a quantum-dot LED design that incorporates robust charge transport layers. Here we report the use of sputtered, amorphous inorganic semiconductors as robust charge transport layers and demonstrate devices capable of operating at current densities exceeding 3.5 A cm−2 with peak brightness of 1,950 Cd m−2 and maximum external electroluminescence efficiency of nearly 0.1%, which represents a 100-fold improvement over previously reported structures8,10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum-dot light-emitting diode design.
Figure 2: Effect of ZnO:SnO2 layer deposition.
Figure 3: Quantum-dot light-emitting diode current–voltage characteristics.
Figure 4: Quantum-dot light-emitting diode EL spectrum and efficiency.
Figure 5: Quantum-dot light-emitting diode RC time-constant measurement.

Similar content being viewed by others

References

  1. Caruge, J.-M., Halpert, J. E., Bulović, V. & Bawendi, M. G. NiO as an inorganic hole-transporting layer in quantum-dot light emitting devices. Nano Lett. 6, 2991–2994 (2006).

    Article  ADS  Google Scholar 

  2. Coe, S., Woo, W. K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  ADS  Google Scholar 

  3. Coe-Sullivan, S., Steckel, J. S., Woo, W. K., Bawendi, M. G. & Bulović, V. Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005).

    Article  Google Scholar 

  4. Coe-Sullivan, S., Woo, W. K., Steckel, J. S., Bawendi, M. G. & Bulović, V. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Organic Electron. 4, 123–130 (2003).

    Article  Google Scholar 

  5. Schlamp, M., Peng, X. & Alivisatos, A. P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842 (1997).

    Article  ADS  Google Scholar 

  6. Steckel, J. S. et. al. Blue luminescence from (CdS)ZnS core–shell nanocrystals. Angew. Chem. Int. Edn 43, 2154–2158 (2004).

    Article  Google Scholar 

  7. Zhao, J. et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006).

    Article  ADS  Google Scholar 

  8. Mueller, A. H. et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039–1044 (2005).

    Article  ADS  Google Scholar 

  9. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  10. Hikmet, R. A. M., Talapin, D. V. & Weller, H. Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J. Appl. Phys. 93, 3509–3514 (2003).

    Article  ADS  Google Scholar 

  11. Klimov, V. I. et. al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  ADS  Google Scholar 

  12. Shimizu, K. T., Woo, W. K., Fisher, B. R., Eisler, H. J. & Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 89, 117401 (2002).

    Article  ADS  Google Scholar 

  13. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W. & Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  ADS  Google Scholar 

  14. Malliaras, G. G. & Scott, J. C. The roles of injection and mobility in organic light emitting diodes. J. Appl. Phys. 83, 5399–5403 (1998).

    Article  ADS  Google Scholar 

  15. Yamada, S., Yoshioka, T., Miyashita, M., Urabe, K. & Kitao, M. Electrochromic properties of sputtered nickel oxide. J. Appl. Phys. 63, 2116–2119 (1987).

    Article  ADS  Google Scholar 

  16. Yoshimura, K., Miki, T. & Tanemura, S. Nickel oxide electrochromic thin films prepared by reactive dc magnetron sputtering. Jpn J. Appl. Phys. 34, 2440–2446 (1995).

    Article  ADS  Google Scholar 

  17. Kozlov, V. G. et al. Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quant. Electron. 36, 18–26 (2000).

    Article  ADS  Google Scholar 

  18. Fisher, B. R., Caruge, J.-M., Chan, Y. T., Halpert, J. E. & Bawendi, M. G. Multiexciton fluorescence from semiconductor nanocrystals. Chem. Phys. 318, 71–81 (2005).

    Article  Google Scholar 

  19. Zhong, X., Feng, Y., Knoll, W. & Han, M. Alloyed ZnxCd1–xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125, 13559–13563 (2003).

    Article  Google Scholar 

  20. Zhong, X., Han, M., Dong, Z., White, T. J. & Knoll, W. Composition-tunable ZnxCd1–xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125, 8589–8594 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Nair and G. Chen for their technical assistance and P. Mardilovich for insightful discussions. This work was supported in part by the National Science Foundation Materials Research Science and Engineering Center at (NSF-MRSEC) the Massachusetts Institute of Technology (MIT) Program (DMR-0213282), making use of its Shared Experimental Facilities, the Harrison Spectroscopy Laboratory (NSF-CHE-011370), the U.S. Army through the Institute for Soldier Nanotechnologies (DAAD-19-02-0002), National Science Foundation Nanoscale Interdisciplinary Research Team (NSF NIRT) (CHE-0507147), and a Presidential Early Carrier Award for Scientists and Engineers (PECASE).

Author information

Authors and Affiliations

Authors

Contributions

J. M. Caruge, J. E. Halpert and V. Wood contributed equally to this work.

Corresponding authors

Correspondence to J. M. Caruge, J. E. Halpert, V. Wood or V. Bulović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruge, J., Halpert, J., Wood, V. et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nature Photon 2, 247–250 (2008). https://doi.org/10.1038/nphoton.2008.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing